These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22281741)

  • 1. Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s⁻¹.
    Warkentin M; Badeau R; Hopkins JB; Mulichak AM; Keefe LJ; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):124-33. PubMed ID: 22281741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation decay of thaumatin crystals at three X-ray energies.
    Liebschner D; Rosenbaum G; Dauter M; Dauter Z
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):772-8. PubMed ID: 25849388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global radiation damage: temperature dependence, time dependence and how to outrun it.
    Warkentin M; Hopkins JB; Badeau R; Mulichak AM; Keefe LJ; Thorne RE
    J Synchrotron Radiat; 2013 Jan; 20(Pt 1):7-13. PubMed ID: 23254651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-dependent radiation sensitivity and order of 70S ribosome crystals.
    Warkentin M; Hopkins JB; Haber JB; Blaha G; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2890-6. PubMed ID: 25372680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.
    Warkentin M; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2010 Oct; 66(Pt 10):1092-100. PubMed ID: 20944242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray and UV radiation-damage-induced phasing using synchrotron serial crystallography.
    Foos N; Seuring C; Schubert R; Burkhardt A; Svensson O; Meents A; Chapman HN; Nanao MH
    Acta Crystallogr D Struct Biol; 2018 Apr; 74(Pt 4):366-378. PubMed ID: 29652263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark progression reveals slow timescales for radiation damage between T = 180 and 240 K.
    Warkentin M; Badeau R; Hopkins J; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2011 Sep; 67(Pt 9):792-803. PubMed ID: 21904032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A survey of global radiation damage to 15 different protein crystal types at room temperature: a new decay model.
    Leal RM; Bourenkov G; Russi S; Popov AN
    J Synchrotron Radiat; 2013 Jan; 20(Pt 1):14-22. PubMed ID: 23254652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation-damage investigation of a DNA 16-mer.
    Bugris V; Harmat V; Ferenc G; Brockhauser S; Carmichael I; Garman EF
    J Synchrotron Radiat; 2019 Jul; 26(Pt 4):998-1009. PubMed ID: 31274421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures.
    de la Mora E; Coquelle N; Bury CS; Rosenthal M; Holton JM; Carmichael I; Garman EF; Burghammer M; Colletier JP; Weik M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(8):4142-4151. PubMed ID: 32047034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy dependence of site-specific radiation damage in protein crystals.
    Homer C; Cooper L; Gonzalez A
    J Synchrotron Radiat; 2011 May; 18(Pt 3):338-45. PubMed ID: 21525641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation damage in protein crystals examined under various conditions by different methods.
    Garman EF; Nave C
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):129-32. PubMed ID: 19240324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational variation of proteins at room temperature is not dominated by radiation damage.
    Russi S; González A; Kenner LR; Keedy DA; Fraser JS; van den Bedem H
    J Synchrotron Radiat; 2017 Jan; 24(Pt 1):73-82. PubMed ID: 28009548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beam-size effects in radiation damage in insulin and thaumatin crystals.
    Schulze-Briese C; Wagner A; Tomizaki T; Oetiker M
    J Synchrotron Radiat; 2005 May; 12(Pt 3):261-7. PubMed ID: 15840909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of X-ray-induced radiation damage of macromolecular crystals by data collection at 15 K: a systematic study.
    Meents A; Wagner A; Schneider R; Pradervand C; Pohl E; Schulze-Briese C
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):302-9. PubMed ID: 17327667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation Damage in Macromolecular Crystallography.
    Garman EF; Weik M
    Methods Mol Biol; 2017; 1607():467-489. PubMed ID: 28573586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector.
    Rajendran C; Dworkowski FS; Wang M; Schulze-Briese C
    J Synchrotron Radiat; 2011 May; 18(Pt 3):318-28. PubMed ID: 21525639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation-induced defects in protein crystals observed by X-ray topography.
    Suzuki R; Baba S; Mizuno N; Hasegawa K; Koizumi H; Kojima K; Kumasaka T; Tachibana M
    Acta Crystallogr D Struct Biol; 2022 Feb; 78(Pt 2):196-203. PubMed ID: 35102885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of decreased radiation damage at higher dose rates in room temperature protein crystallography.
    Southworth-Davies RJ; Medina MA; Carmichael I; Garman EF
    Structure; 2007 Dec; 15(12):1531-41. PubMed ID: 18073104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards atomic resolution with crystals grown in gel: the case of thaumatin seen at room temperature.
    Sauter C; Lorber B; Giegé R
    Proteins; 2002 Aug; 48(2):146-50. PubMed ID: 12112683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.