BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22281747)

  • 1. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis.
    Procházková K; Cermáková K; Pachl P; Sieglová I; Fábry M; Otwinowski Z; Rezáčová P
    Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):176-85. PubMed ID: 22281747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon.
    Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I
    Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional domains of the Bacillus subtilis transcription factor AraR and identification of amino acids important for nucleoprotein complex assembly and effector binding.
    Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I
    J Bacteriol; 2006 Apr; 188(8):3024-36. PubMed ID: 16585763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene.
    Sá-Nogueira I; Mota LJ
    J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis.
    Mota LJ; Tavares P; Sá-Nogueira I
    Mol Microbiol; 1999 Aug; 33(3):476-89. PubMed ID: 10417639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex.
    Wang E; Bauer MC; Rogstam A; Linse S; Logan DT; von Wachenfeldt C
    Mol Microbiol; 2008 Jul; 69(2):466-78. PubMed ID: 18485070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation.
    Sinha SC; Krahn J; Shin BS; Tomchick DR; Zalkin H; Smith JL
    J Bacteriol; 2003 Jul; 185(14):4087-98. PubMed ID: 12837783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the induction mechanism of the GntR/HutC bacterial transcription regulator YvoA.
    Resch M; Schiltz E; Titgemeyer F; Muller YA
    Nucleic Acids Res; 2010 Apr; 38(7):2485-97. PubMed ID: 20047956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the arabinose regulon in Bacillus subtilis by AraR in vivo: crucial roles of operators, cooperativity, and DNA looping.
    Mota LJ; Sarmento LM; de Sá-Nogueira I
    J Bacteriol; 2001 Jul; 183(14):4190-201. PubMed ID: 11418559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization.
    Sá-Nogueira I; Ramos SS
    J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the effector-binding domain of deoxyribonucleoside regulator DeoR from Bacillus subtilis.
    Škerlová J; Fábry M; Hubálek M; Otwinowski Z; Rezáčová P
    FEBS J; 2014 Sep; 281(18):4280-92. PubMed ID: 24863636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE
    J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The LacI-Type transcriptional regulator AraR acts as an L-arabinose-responsive repressor of L-arabinose utilization genes in Corynebacterium glutamicum ATCC 31831.
    Kuge T; Teramoto H; Yukawa H; Inui M
    J Bacteriol; 2014 Jun; 196(12):2242-54. PubMed ID: 24706742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of the effector-binding domain of repressor Central glycolytic gene Regulator from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates.
    Rezácová P; Kozísek M; Moy SF; Sieglová I; Joachimiak A; Machius M; Otwinowski Z
    Mol Microbiol; 2008 Aug; 69(4):895-910. PubMed ID: 18554327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-resolution structure of the DNA-binding domain of AhrC, the arginine repressor/activator protein from Bacillus subtilis.
    Garnett JA; Baumberg S; Stockley PG; Phillips SE
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Nov; 63(Pt 11):914-7. PubMed ID: 18007039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved Dynamic Mechanism of Allosteric Response to L-arg in Divergent Bacterial Arginine Repressors.
    Pandey SK; Melichercik M; Řeha D; Ettrich RH; Carey J
    Molecules; 2020 May; 25(9):. PubMed ID: 32397647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the effector-binding domain of the trehalose-repressor of Escherichia coli, a member of the LacI family, in its complexes with inducer trehalose-6-phosphate and noninducer trehalose.
    Hars U; Horlacher R; Boos W; Welte W; Diederichs K
    Protein Sci; 1998 Dec; 7(12):2511-21. PubMed ID: 9865945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity in Repressor-DNA Interactions Neutralizes Loss of Symmetry in Bipartite Operators.
    Jain D; Narayanan N; Nair DT
    J Biol Chem; 2016 Jan; 291(3):1235-42. PubMed ID: 26511320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation of genes encoding arabinan-degrading enzymes in Bacillus subtilis.
    Raposo MP; Inácio JM; Mota LJ; de Sá-Nogueira I
    J Bacteriol; 2004 Mar; 186(5):1287-96. PubMed ID: 14973026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of B. subtilis CcpA effector binding site.
    Chaptal V; Gueguen-Chaignon V; Poncet S; Lecampion C; Meyer P; Deutscher J; Galinier A; Nessler S; Moréra S
    Proteins; 2006 Aug; 64(3):814-6. PubMed ID: 16755587
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.