These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 22281748)
1. The role of Asp116 in the reductive cleavage of dioxygen to water in CotA laccase: assistance during the proton-transfer mechanism. Silva CS; Damas JM; Chen Z; Brissos V; Martins LO; Soares CM; Lindley PF; Bento I Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):186-93. PubMed ID: 22281748 [TBL] [Abstract][Full Text] [Related]
2. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Chen Z; Durão P; Silva CS; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Dalton Trans; 2010 Mar; 39(11):2875-82. PubMed ID: 20200715 [TBL] [Abstract][Full Text] [Related]
3. The kinetic role of carboxylate residues in the proximity of the trinuclear centre in the O2 reactivity of CotA-laccase. Brissos V; Chen Z; Martins LO Dalton Trans; 2012 May; 41(20):6247-55. PubMed ID: 22481612 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. Bento I; Silva CS; Chen Z; Martins LO; Lindley PF; Soares CM BMC Struct Biol; 2010 Sep; 10():28. PubMed ID: 20822511 [TBL] [Abstract][Full Text] [Related]
6. The role of positive charged residue in the proton-transfer mechanism of two-domain laccase from Gabdulkhakov A; Kolyadenko I; Oliveira P; Tamagnini P; Mikhaylina A; Tishchenko S J Biomol Struct Dyn; 2022 Nov; 40(18):8324-8331. PubMed ID: 33870857 [TBL] [Abstract][Full Text] [Related]
7. Proximal mutations at the type 1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants. Durão P; Chen Z; Silva CS; Soares CM; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Biochem J; 2008 Jun; 412(2):339-46. PubMed ID: 18307408 [TBL] [Abstract][Full Text] [Related]
8. Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase tune the catalysis by hydrogen-bonding networks. Liu H; Zhu Y; Yang X; Lin Y Appl Microbiol Biotechnol; 2018 May; 102(9):4049-4061. PubMed ID: 29516147 [TBL] [Abstract][Full Text] [Related]
9. Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. Enguita FJ; Marçal D; Martins LO; Grenha R; Henriques AO; Lindley PF; Carrondo MA J Biol Chem; 2004 May; 279(22):23472-6. PubMed ID: 14764581 [TBL] [Abstract][Full Text] [Related]
10. Structural insight into the oxidation of sinapic acid by CotA laccase. Xie T; Liu Z; Liu Q; Wang G J Struct Biol; 2015 May; 190(2):155-61. PubMed ID: 25799944 [TBL] [Abstract][Full Text] [Related]
11. Insight into stability of CotA laccase from the spore coat of Bacillus subtilis. Melo EP; Fernandes AT; Durão P; Martins LO Biochem Soc Trans; 2007 Dec; 35(Pt 6):1579-82. PubMed ID: 18031270 [TBL] [Abstract][Full Text] [Related]
12. Structural study of the X-ray-induced enzymatic reduction of molecular oxygen to water by Steccherinum murashkinskyi laccase: insights into the reaction mechanism. Polyakov KM; Gavryushov S; Ivanova S; Fedorova TV; Glazunova OA; Popov AN; Koroleva OV Acta Crystallogr D Struct Biol; 2017 May; 73(Pt 5):388-401. PubMed ID: 28471364 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of an ascomycete fungal laccase from Thielavia arenaria--common structural features of asco-laccases. Kallio JP; Gasparetti C; Andberg M; Boer H; Koivula A; Kruus K; Rouvinen J; Hakulinen N FEBS J; 2011 Jul; 278(13):2283-95. PubMed ID: 21535408 [TBL] [Abstract][Full Text] [Related]
14. The structure of Rigidoporus lignosus Laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. Garavaglia S; Cambria MT; Miglio M; Ragusa S; Iacobazzi V; Palmieri F; D'Ambrosio C; Scaloni A; Rizzi M J Mol Biol; 2004 Oct; 342(5):1519-31. PubMed ID: 15364578 [TBL] [Abstract][Full Text] [Related]
15. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Gupta N; Farinas ET Protein Eng Des Sel; 2010 Aug; 23(8):679-82. PubMed ID: 20551082 [TBL] [Abstract][Full Text] [Related]
16. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. Kallio JP; Auer S; Jänis J; Andberg M; Kruus K; Rouvinen J; Koivula A; Hakulinen N J Mol Biol; 2009 Oct; 392(4):895-909. PubMed ID: 19563811 [TBL] [Abstract][Full Text] [Related]
17. A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Hakulinen N; Kruus K; Koivula A; Rouvinen J Biochem Biophys Res Commun; 2006 Dec; 350(4):929-34. PubMed ID: 17045575 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. Ferraroni M; Myasoedova NM; Schmatchenko V; Leontievsky AA; Golovleva LA; Scozzafava A; Briganti F BMC Struct Biol; 2007 Sep; 7():60. PubMed ID: 17897461 [TBL] [Abstract][Full Text] [Related]
19. Probing the dioxygen route in Melanocarpus albomyces laccase with pressurized xenon gas. Kallio JP; Rouvinen J; Kruus K; Hakulinen N Biochemistry; 2011 May; 50(21):4396-8. PubMed ID: 21524088 [TBL] [Abstract][Full Text] [Related]
20. The removal of a disulfide bridge in CotA-laccase changes the slower motion dynamics involved in copper binding but has no effect on the thermodynamic stability. Fernandes AT; Pereira MM; Silva CS; Lindley PF; Bento I; Melo EP; Martins LO J Biol Inorg Chem; 2011 Apr; 16(4):641-51. PubMed ID: 21369750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]