BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 22281945)

  • 1. Cyclic strain anisotropy regulates valvular interstitial cell phenotype and tissue remodeling in three-dimensional culture.
    Gould RA; Chin K; Santisakultarm TP; Dropkin A; Richards JM; Schaffer CB; Butcher JT
    Acta Biomater; 2012 May; 8(5):1710-9. PubMed ID: 22281945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating homogenous strain distribution within 3D cell-encapsulated constructs using a simple and cost-effective uniaxial tensile bioreactor: Design and validation study.
    Subramanian G; Elsaadany M; Bialorucki C; Yildirim-Ayan E
    Biotechnol Bioeng; 2017 Aug; 114(8):1878-1887. PubMed ID: 28425561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying controlled non-uniform deformation for in vitro studies of cell mechanobiology.
    Balestrini JL; Skorinko JK; Hera A; Gaudette GR; Billiar KL
    Biomech Model Mechanobiol; 2010 Jun; 9(3):329-44. PubMed ID: 20169395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a Mechanobioreactor to Apply Anisotropic, Biaxial Strain to Large Thin Biomaterials for Tissue Engineered Heart Valve Applications.
    Wong E; Parvin Nejad S; D'Costa KA; Machado Siqueira N; Lecce M; Santerre JP; Simmons CA
    Ann Biomed Eng; 2022 Sep; 50(9):1073-1089. PubMed ID: 35622208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds.
    Jeong SI; Kwon JH; Lim JI; Cho SW; Jung Y; Sung WJ; Kim SH; Kim YH; Lee YM; Kim BS; Choi CY; Kim SJ
    Biomaterials; 2005 Apr; 26(12):1405-11. PubMed ID: 15482828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of fibroblast-seeded collagen gels under planar biaxial mechanical constraints: a biomechanical study.
    Hu JJ; Liu YC; Chen GW; Wang MX; Lee PY
    Biomech Model Mechanobiol; 2013 Oct; 12(5):849-68. PubMed ID: 23096240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch.
    Balachandran K; Konduri S; Sucosky P; Jo H; Yoganathan AP
    Ann Biomed Eng; 2006 Nov; 34(11):1655-65. PubMed ID: 17031600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen fiber alignment does not explain mechanical anisotropy in fibroblast populated collagen gels.
    Thomopoulos S; Fomovsky GM; Chandran PL; Holmes JW
    J Biomech Eng; 2007 Oct; 129(5):642-50. PubMed ID: 17887889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion.
    Lu L; Mende M; Yang X; Körber HF; Schnittler HJ; Weinert S; Heubach J; Werner C; Ravens U
    Tissue Eng Part A; 2013 Feb; 19(3-4):403-14. PubMed ID: 22991978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.
    Lei Y; Masjedi S; Ferdous Z
    J Mech Behav Biomed Mater; 2017 Nov; 75():351-358. PubMed ID: 28783560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of structural and mechanical anisotropy in fibroblast populated collagen gels.
    Thomopoulos S; Fomovsky GM; Holmes JW
    J Biomech Eng; 2005 Oct; 127(5):742-50. PubMed ID: 16248303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast.
    Merryman WD; Lukoff HD; Long RA; Engelmayr GC; Hopkins RA; Sacks MS
    Cardiovasc Pathol; 2007; 16(5):268-76. PubMed ID: 17868877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibroblast-seeded collagen gels in response to dynamic equibiaxial mechanical stimuli: A biomechanical study.
    Lee PY; Liu YC; Wang MX; Hu JJ
    J Biomech; 2018 Sep; 78():134-142. PubMed ID: 30107900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells.
    Moraes C; Likhitpanichkul M; Lam CJ; Beca BM; Sun Y; Simmons CA
    Integr Biol (Camb); 2013 Apr; 5(4):673-80. PubMed ID: 23403640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved prediction of the collagen fiber architecture in the aortic heart valve.
    Driessen NJ; Bouten CV; Baaijens FP
    J Biomech Eng; 2005 Apr; 127(2):329-36. PubMed ID: 15971711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall.
    Butcher JT; Barrett BC; Nerem RM
    Biomaterials; 2006 Oct; 27(30):5252-8. PubMed ID: 16806457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress.
    Butcher JT; Nerem RM
    Tissue Eng; 2006 Apr; 12(4):905-15. PubMed ID: 16674302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: toward a biomimetic in vitro model for heart valve tissue engineering.
    Masoumi N; Johnson KL; Howell MC; Engelmayr GC
    Acta Biomater; 2013 Apr; 9(4):5974-88. PubMed ID: 23295404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro.
    Throm Quinlan AM; Sierad LN; Capulli AK; Firstenberg LE; Billiar KL
    PLoS One; 2011; 6(8):e23272. PubMed ID: 21858051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the role of mechanical stimulation on smooth muscle cells: A comparative study between 2D and 3D models.
    Bono N; Pezzoli D; Levesque L; Loy C; Candiani G; Fiore GB; Mantovani D
    Biotechnol Bioeng; 2016 Oct; 113(10):2254-63. PubMed ID: 26987444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.