These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 2228219)
41. Differential susceptibility of yeast and hyphal forms of Candida albicans to proteolytic activity of macrophages. Blasi E; Pitzurra L; Chimienti AR; Mazzolla R; Puliti M; Barluzzi R; Bistoni F Infect Immun; 1995 Apr; 63(4):1253-7. PubMed ID: 7890381 [TBL] [Abstract][Full Text] [Related]
42. Changes in cell envelope glycoproteins during germ-tube formation of Candida albicans. Broom MF; Shepherd MG; Sullivan PA Microbios; 1991; 67(274):7-21. PubMed ID: 1758310 [TBL] [Abstract][Full Text] [Related]
43. Contribution of cell surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobic Candida albicans serotype A cells. Singleton DR; Fidel PL; Wozniak KL; Hazen KC FEMS Microbiol Lett; 2005 Mar; 244(2):373-7. PubMed ID: 15766793 [TBL] [Abstract][Full Text] [Related]
44. Enzymatic release of germ tube-specific antigens from cell walls of Candida albicans. Sundstrom PM; Kenny GE Infect Immun; 1985 Sep; 49(3):609-14. PubMed ID: 3897059 [TBL] [Abstract][Full Text] [Related]
45. Incubation temperatures affect adherence to plastic of Candida albicans by changing the cellular surface hydrophobicity. Blanco MT; Blanco J; Sanchez-Benito R; Pérez-Giraldo C; Morán FJ; Hurtado C; Gómez-García AC Microbios; 1997; 89(358):23-8. PubMed ID: 9254331 [TBL] [Abstract][Full Text] [Related]
46. Differences in osmotolerant and cell-wall properties of two Zygosaccharomyces rouxii strains. Pribylová L; Farkas V; Slaninová I; de Montigny J; Sychrová H Folia Microbiol (Praha); 2007; 52(3):241-5. PubMed ID: 17702462 [TBL] [Abstract][Full Text] [Related]
47. [Demonstration of β-1,2 mannan structures expressed on the cell wall of Candida albicans yeast form but not on the hyphal form by using monoclonal antibodies]. Aydın C; Ataoğlu H Mikrobiyol Bul; 2015 Jan; 49(1):66-76. PubMed ID: 25706732 [TBL] [Abstract][Full Text] [Related]
48. Comparative analysis of hydrophobicity and dentin adhesion ability in Candida albicans strains. Miranda TT; Rodrigues L; Rosa CA; Corrêa Junior A J Appl Oral Sci; 2024; 32():e20240154. PubMed ID: 39258716 [TBL] [Abstract][Full Text] [Related]
49. Changes in the cell surface of the dimorphic forms of Candida albicans by treatment with hydrolytic enzymes. Chattaway FW; Shenolikar S; O'Reilly J; Barlow AJ J Gen Microbiol; 1976 Aug; 96(2):335-47. PubMed ID: 784907 [TBL] [Abstract][Full Text] [Related]
50. Surface-active properties of Candida albicans. Klotz SA Appl Environ Microbiol; 1989 Sep; 55(9):2119-22. PubMed ID: 2679378 [TBL] [Abstract][Full Text] [Related]
51. Lipid composition and cell surface hydrophobicity of Candida albicans influence the efficacy of fluconazole-gentamicin treatment. Suchodolski J; Muraszko J; Korba A; Bernat P; Krasowska A Yeast; 2020 Jan; 37(1):117-129. PubMed ID: 31826306 [TBL] [Abstract][Full Text] [Related]
52. The efficacy of lyticase and β-glucosidase enzymes on biofilm degradation of Pseudomonas aeruginosa strains with different gene profiles. Banar M; Emaneini M; Beigverdi R; Fanaei Pirlar R; Node Farahani N; van Leeuwen WB; Jabalameli F BMC Microbiol; 2019 Dec; 19(1):291. PubMed ID: 31830915 [TBL] [Abstract][Full Text] [Related]
53. New assay for measuring cell surface hydrophobicities of Candida dubliniensis and Candida albicans. Jabra-Rizk MA; Falkler WA; Merz WG; Meiller TF Clin Diagn Lab Immunol; 2001 May; 8(3):585-7. PubMed ID: 11329462 [TBL] [Abstract][Full Text] [Related]
54. Using dielectrophoresis to study the dynamic response of single budding yeast cells to Lyticase. Tang SY; Yi P; Soffe R; Nahavandi S; Shukla R; Khoshmanesh K Anal Bioanal Chem; 2015 May; 407(12):3437-48. PubMed ID: 25701421 [TBL] [Abstract][Full Text] [Related]
55. Candida albicans mycelial wall structure: supramolecular complexes released by zymolyase, chitinase and beta-mercaptoethanol. Marcilla A; Elorza MV; Mormeneo S; Rico H; Sentandreu R Arch Microbiol; 1991; 155(4):312-9. PubMed ID: 2048934 [TBL] [Abstract][Full Text] [Related]
56. A monoclonal antibody that defines a surface antigen on Candida albicans hyphae cross-reacts with yeast cell protoplasts. Ollert MW; Calderone RA Infect Immun; 1990 Mar; 58(3):625-31. PubMed ID: 1689699 [TBL] [Abstract][Full Text] [Related]
57. Phenotypic switching and its influence on expression of virulence factors by Candida albicans causing candidiasis in human immunodeficiency virus-infected patients. Antony G; Saralaya V; Bhat GK; Shivananda PG Indian J Med Microbiol; 2007 Jul; 25(3):241-4. PubMed ID: 17901642 [TBL] [Abstract][Full Text] [Related]
58. Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. Zlotnik H; Fernandez MP; Bowers B; Cabib E J Bacteriol; 1984 Sep; 159(3):1018-26. PubMed ID: 6207165 [TBL] [Abstract][Full Text] [Related]
59. Protoplasts from yeast and mycelial forms of Candida albicans. Torres-Bauzá LJ; Riggsby WS J Gen Microbiol; 1980 Aug; 119(2):341-9. PubMed ID: 7014767 [TBL] [Abstract][Full Text] [Related]
60. Identification of beta-1,6-glucosylated cell wall proteins in yeast and hyphal forms of Candida albicans. Kapteyn JC; Montijn RC; Dijkgraaf GJ; Klis FM Eur J Cell Biol; 1994 Dec; 65(2):402-7. PubMed ID: 7536675 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]