These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22282294)

  • 1. Modeling the viscosity and aggregation of suspensions of highly anisotropic nanoparticles.
    Puisto A; Illa X; Mohtaschemi M; Alava MJ
    Eur Phys J E Soft Matter; 2012 Jan; 35(1):6. PubMed ID: 22282294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena.
    Nechyporchuk O; Belgacem MN; Pignon F
    Carbohydr Polym; 2014 Nov; 112():432-9. PubMed ID: 25129764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology of regenerated cellulose suspension and influence of sodium alginate.
    Jiang Y; De La Cruz JA; Ding L; Wang B; Feng X; Mao Z; Xu H; Sui X
    Int J Biol Macromol; 2020 Apr; 148():811-816. PubMed ID: 31962069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of flow of mixtures through anisotropic porous media using a lattice Boltzmann model.
    Mendoza M; Wittel FK; Herrmann HJ
    Eur Phys J E Soft Matter; 2010 Aug; 32(4):339-48. PubMed ID: 20737190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and rheology of SiO2 nanoparticle suspensions under very high shear rates.
    Chevalier J; Tillement O; Ayela F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051403. PubMed ID: 20364981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect.
    Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN
    Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions.
    Zhou L; He H; Li MC; Song K; Cheng HN; Wu Q
    Carbohydr Polym; 2016 Nov; 153():445-454. PubMed ID: 27561516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods.
    Xu Y; Atrens AD; Stokes JR
    J Colloid Interface Sci; 2017 Jun; 496():130-140. PubMed ID: 28214623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming.
    Saarikoski E; Rissanen M; Seppälä J
    Carbohydr Polym; 2015 Mar; 119():62-70. PubMed ID: 25563945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscosity calculation of a nanoparticle suspension confined in nanochannels.
    Wang Y; Keblinski P; Chen Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036313. PubMed ID: 23031019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Progress in Rheology of Cellulose Nanofibril Suspensions.
    Nechyporchuk O; Belgacem MN; Pignon F
    Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-mechanics of electrostatically stabilized suspensions of cellulose nanofibrils under steady state shear flow.
    Martoïa F; Dumont PJ; Orgéas L; Belgacem MN; Putaux JL
    Soft Matter; 2016 Feb; 12(6):1721-35. PubMed ID: 26725654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and nonlinear oscillatory rheology of chemically pretreated and non-pretreated cellulose nanofiber suspensions.
    Song HY; Park SY; Kim S; Youn HJ; Hyun K
    Carbohydr Polym; 2022 Jan; 275():118765. PubMed ID: 34742451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of non-Brownian suspensions.
    Denn MM; Morris JF
    Annu Rev Chem Biomol Eng; 2014; 5():203-28. PubMed ID: 24655134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of depletion forces on the morphological structure of carboxymethyl cellulose and micro/nano cellulose fiber suspensions.
    Souza SF; Mariano M; De Farias MA; Bernardes JS
    J Colloid Interface Sci; 2019 Mar; 538():228-236. PubMed ID: 30513464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions.
    Lewis L; Derakhshandeh M; Hatzikiriakos SG; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2016 Aug; 17(8):2747-54. PubMed ID: 27467200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting the rheology and processability of highly filled suspensions.
    Kalyon DM; Aktaş S
    Annu Rev Chem Biomol Eng; 2014; 5():229-54. PubMed ID: 24910916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.