These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 2228252)

  • 1. Growth of Chlamydia trachomatis in enucleated cells.
    Perara E; Yen TS; Ganem D
    Infect Immun; 1990 Nov; 58(11):3816-8. PubMed ID: 2228252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions.
    Matsumoto A; Bessho H; Uehira K; Suda T
    J Electron Microsc (Tokyo); 1991 Oct; 40(5):356-63. PubMed ID: 1666645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles.
    Yasir M; Pachikara ND; Bao X; Pan Z; Fan H
    Infect Immun; 2011 Oct; 79(10):4019-28. PubMed ID: 21807906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins.
    Taraska T; Ward DM; Ajioka RS; Wyrick PB; Davis-Kaplan SR; Davis CH; Kaplan J
    Infect Immun; 1996 Sep; 64(9):3713-27. PubMed ID: 8751921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry.
    Scidmore MA; Rockey DD; Fischer ER; Heinzen RA; Hackstadt T
    Infect Immun; 1996 Dec; 64(12):5366-72. PubMed ID: 8945589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of host cell cytokinesis by Chlamydia trachomatis infection.
    Greene W; Zhong G
    J Infect; 2003 Jul; 47(1):45-51. PubMed ID: 12850162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural and molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes.
    Koehler L; Nettelnbreker E; Hudson AP; Ott N; GĂ©rard HC; Branigan PJ; Schumacher HR; Drommer W; Zeidler H
    Microb Pathog; 1997 Mar; 22(3):133-42. PubMed ID: 9075216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated development of genital Chlamydia trachomatis serovar E in McCoy cells grown on microcarrier beads.
    Wyrick PB; Gerbig DG; Knight ST; Raulston JE
    Microb Pathog; 1996 Jan; 20(1):31-40. PubMed ID: 8692008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Wnt Signaling Pathways Impairs
    Kintner J; Moore CG; Whittimore JD; Butler M; Hall JV
    Front Cell Infect Microbiol; 2017; 7():501. PubMed ID: 29322031
    [No Abstract]   [Full Text] [Related]  

  • 10. The interaction of Chlamydia trachomatis with host cells: ultrastructural studies of the mechanism of release of a biovar II strain from HeLa 229 cells.
    Todd WJ; Caldwell HD
    J Infect Dis; 1985 Jun; 151(6):1037-44. PubMed ID: 3889172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivation of persistent Chlamydia trachomatis infection in cell culture.
    Beatty WL; Morrison RP; Byrne GI
    Infect Immun; 1995 Jan; 63(1):199-205. PubMed ID: 7806358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
    Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydia trachomatis targets mitochondrial dynamics to promote intracellular survival and proliferation.
    Kurihara Y; Itoh R; Shimizu A; Walenna NF; Chou B; Ishii K; Soejima T; Fujikane A; Hiromatsu K
    Cell Microbiol; 2019 Jan; 21(1):e12962. PubMed ID: 30311994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infection of myocytes with chlamydiae.
    Wang G; Burczynski F; Hasinoff B; Zhong G
    Microbiology (Reading); 2002 Dec; 148(Pt 12):3955-3959. PubMed ID: 12480899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process.
    Grieshaber SS; Grieshaber NA; Hackstadt T
    J Cell Sci; 2003 Sep; 116(Pt 18):3793-802. PubMed ID: 12902405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental stage oxidoreductive states of Chlamydia and infected host cells.
    Wang X; Schwarzer C; Hybiske K; Machen TE; Stephens RS
    mBio; 2014 Oct; 5(6):e01924. PubMed ID: 25352618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The developmental cycle of Chlamydia trachomatis in McCoy cells treated with cytochalasin B.
    Stirling P; Richmond S
    J Gen Microbiol; 1977 May; 100(1):31-42. PubMed ID: 195005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural analysis of the growth cycle of Chlamydia trachomatis in mouse cells treated with recombinant human alpha-interferons.
    de la Maza LM; Goebel JM; Czarniecki CW; Peterson EM
    Exp Mol Pathol; 1984 Oct; 41(2):227-35. PubMed ID: 6479293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydial Lytic Exit from Host Cells Is Plasmid Regulated.
    Yang C; Starr T; Song L; Carlson JH; Sturdevant GL; Beare PA; Whitmire WM; Caldwell HD
    mBio; 2015 Nov; 6(6):e01648-15. PubMed ID: 26556273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis.
    van Ooij C; Kalman L; van Ijzendoorn ; Nishijima M; Hanada K; Mostov K; Engel JN
    Cell Microbiol; 2000 Dec; 2(6):627-37. PubMed ID: 11207614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.