These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 22282537)
81. Development of indel markers from Citrus clementina (Rutaceae) BAC-end sequences and interspecific transferability in Citrus. Ollitrault F; Terol J; Martin AA; Pina JA; Navarro L; Talon M; Ollitrault P Am J Bot; 2012 Jul; 99(7):e268-73. PubMed ID: 22733984 [TBL] [Abstract][Full Text] [Related]
82. Development and Application of InDel Markers for Capsicum spp. Based on Whole-Genome Re-Sequencing. Guo G; Zhang G; Pan B; Diao W; Liu J; Ge W; Gao C; Zhang Y; Jiang C; Wang S Sci Rep; 2019 Mar; 9(1):3691. PubMed ID: 30842649 [TBL] [Abstract][Full Text] [Related]
83. Genome-wide identification and development of InDel markers in tobacco ( Li H; Ikram M; Xia Y; Li R; Yuan Q; Zhao W; Siddique KHM; Guo P Physiol Mol Biol Plants; 2022 May; 28(5):1077-1089. PubMed ID: 35722506 [TBL] [Abstract][Full Text] [Related]
84. Expression of the AtSUC1 gene in the female gametophyte, and ecotype-specific expression differences in male reproductive organs. Feuerstein A; Niedermeier M; Bauer K; Engelmann S; Hoth S; Stadler R; Sauer N Plant Biol (Stuttg); 2010 Sep; 12 Suppl 1():105-14. PubMed ID: 20712626 [TBL] [Abstract][Full Text] [Related]
85. InDel markers: An extended marker resource for molecular breeding in chickpea. Jain A; Roorkiwal M; Kale S; Garg V; Yadala R; Varshney RK PLoS One; 2019; 14(3):e0213999. PubMed ID: 30883592 [TBL] [Abstract][Full Text] [Related]
86. High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. West MA; van Leeuwen H; Kozik A; Kliebenstein DJ; Doerge RW; St Clair DA; Michelmore RW Genome Res; 2006 Jun; 16(6):787-95. PubMed ID: 16702412 [TBL] [Abstract][Full Text] [Related]
87. Arabidopsis mutants may represent recombinant introgression lines. Yadav NS; Khadka J; Grafi G BMC Res Notes; 2018 Apr; 11(1):227. PubMed ID: 29615117 [TBL] [Abstract][Full Text] [Related]
88. Development and characterization of 96 microsatellite markers suitable for QTL mapping and accession control in an Arabidopsis core collection. Cosson P; Decroocq V; Revers F Plant Methods; 2014 Jan; 10(1):2. PubMed ID: 24447639 [TBL] [Abstract][Full Text] [Related]
89. A genome-wide scan for correlated mutations detects macromolecular and chromatin interactions in Arabidopsis thaliana. Perlaza-Jiménez L; Walther D Nucleic Acids Res; 2018 Sep; 46(16):8114-8132. PubMed ID: 29986106 [TBL] [Abstract][Full Text] [Related]
90. Structural variation among assembled genomes facilitates development of rapid and low-cost NOR-linked markers and NOR-telomere junction mapping in Arabidopsis. Saradadevi GP; Fultz D; Ramgopal MK; Subramanian AT; Prince G; Thakur V; Mohannath G Plant Cell Rep; 2023 Jun; 42(6):1059-1069. PubMed ID: 37074465 [TBL] [Abstract][Full Text] [Related]
91. Differential responses of Arabidopsis thaliana accessions to atmospheric nitrogen dioxide at ambient concentrations. Takahashi M; Morikawa H Plant Signal Behav; 2014; 9(4):e28563. PubMed ID: 24675109 [TBL] [Abstract][Full Text] [Related]
92. A chromosome-level sequence assembly reveals the structure of the Arabidopsis thaliana Nd-1 genome and its gene set. Pucker B; Holtgräwe D; Stadermann KB; Frey K; Huettel B; Reinhardt R; Weisshaar B PLoS One; 2019; 14(5):e0216233. PubMed ID: 31112551 [TBL] [Abstract][Full Text] [Related]
93. Gene discovery using mutagen-induced polymorphisms and deep sequencing: application to plant disease resistance. Zhu Y; Mang HG; Sun Q; Qian J; Hipps A; Hua J Genetics; 2012 Sep; 192(1):139-46. PubMed ID: 22714407 [TBL] [Abstract][Full Text] [Related]
94. A toolkit for rapid gene mapping in the nematode Caenorhabditis briggsae. Koboldt DC; Staisch J; Thillainathan B; Haines K; Baird SE; Chamberlin HM; Haag ES; Miller RD; Gupta BP BMC Genomics; 2010 Apr; 11():236. PubMed ID: 20385026 [TBL] [Abstract][Full Text] [Related]
95. Development of Omni InDel and supporting database for maize. Liu Z; Zhao Y; Zhang Y; Xu L; Zhou L; Yang W; Zhao H; Zhao J; Wang F Front Plant Sci; 2023; 14():1216505. PubMed ID: 37457340 [TBL] [Abstract][Full Text] [Related]
96. Twenty-Five Years of Propagation in Suspension Cell Culture Results in Substantial Alterations of the Pucker B; Rückert C; Stracke R; Viehöver P; Kalinowski J; Weisshaar B Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31480756 [No Abstract] [Full Text] [Related]
97. Fluorescence-microscopy screening and next-generation sequencing: useful tools for the identification of genes involved in organelle integrity. Stefano G; Renna L; Brandizzi F J Vis Exp; 2012 Apr; (62):. PubMed ID: 22526030 [TBL] [Abstract][Full Text] [Related]
98. Progressive fine mapping in experimental populations: an improved strategy toward positional cloning. Chi XF; Lou XY; Shu QY J Theor Biol; 2008 Aug; 253(4):817-23. PubMed ID: 18533192 [TBL] [Abstract][Full Text] [Related]
99. Prediction of protein-destabilizing polymorphisms by manual curation with protein structure. Gough CA; Homma K; Yamaguchi-Kabata Y; Shimada MK; Chakraborty R; Fujii Y; Iwama H; Minoshima S; Sakamoto S; Sato Y; Suzuki Y; Tada-Umezaki M; Nishikawa K; Imanishi T; Gojobori T PLoS One; 2012; 7(11):e50445. PubMed ID: 23189203 [TBL] [Abstract][Full Text] [Related]
100. A computational framework for evaluating the efficiency of Arabidopsis accessions in response to nitrogen stress reveals important metabolic mechanisms. Kleessen S; Fernie AR; Nikoloski Z Front Plant Sci; 2012; 3():217. PubMed ID: 23056002 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]