BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22283750)

  • 21. Familial and developmental abnormalities of front lobe function and neurochemistry in schizophrenia.
    Deakin FW; Simpson MD; Slater P; Hellewell JS
    J Psychopharmacol; 1997; 11(2):133-42. PubMed ID: 9254279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent developments in neurochemical imaging in schizophrenia: an update.
    Vyas NS; Patel NH; Herscovitch P; Puri BK; Lanzenberger R
    Curr Med Chem; 2013; 20(3):351-6. PubMed ID: 23157626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutamatergic mechanisms in schizophrenia.
    Tsai G; Coyle JT
    Annu Rev Pharmacol Toxicol; 2002; 42():165-79. PubMed ID: 11807169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glutamatergic neurotransmission involves structural and clinical deficits of schizophrenia.
    Tsai G; van Kammen DP; Chen S; Kelley ME; Grier A; Coyle JT
    Biol Psychiatry; 1998 Oct; 44(8):667-74. PubMed ID: 9798069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The potential role of lamotrigine in schizophrenia.
    Large CH; Webster EL; Goff DC
    Psychopharmacology (Berl); 2005 Sep; 181(3):415-36. PubMed ID: 16001126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutamatergic transmission in schizophrenia: from basic research to clinical practice.
    Kantrowitz J; Javitt DC
    Curr Opin Psychiatry; 2012 Mar; 25(2):96-102. PubMed ID: 22297716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glutamate hypothesis in schizophrenia.
    Uno Y; Coyle JT
    Psychiatry Clin Neurosci; 2019 May; 73(5):204-215. PubMed ID: 30666759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Evidence on the key role of the metabotrobic glutamatergic receptors in the pathogenesis of schizophrenia: a "breakthrough" in pharmacological treatment].
    Pannese R; Minichino A; Pignatelli M; Delle Chiaie R; Biondi M; Nicoletti F
    Riv Psichiatr; 2012; 47(2):149-69. PubMed ID: 22622251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Is NMDA receptor hypofunction in schizophrenia associated with a primary hyperglutamatergic state?
    Shim SS; Adityanjee
    Arch Gen Psychiatry; 2002 May; 59(5):466-7; author reply 467-8. PubMed ID: 11982452
    [No Abstract]   [Full Text] [Related]  

  • 30. Using molecular imaging to understand early schizophrenia-related psychosis neurochemistry: a review of human studies.
    Schifani C; Hafizi S; Da Silva T; Watts JJ; Khan MS; Mizrahi R
    Int Rev Psychiatry; 2017 Dec; 29(6):555-566. PubMed ID: 29219634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypothesis: minimal changes in neural transmission in schizophrenia: decreased glutamatergic and GABAergic functions in the prefrontal cortex.
    Ohnuma T; Suzuki T; Arai H
    Prog Neuropsychopharmacol Biol Psychiatry; 2005 Jul; 29(6):889-94. PubMed ID: 15949884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamatergic abnormalities of the thalamus in schizophrenia: a systematic review.
    Watis L; Chen SH; Chua HC; Chong SA; Sim K
    J Neural Transm (Vienna); 2008; 115(3):493-511. PubMed ID: 18301955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMDA pathology and treatment of schizophrenia.
    Chang HJ; Lane HY; Tsai GE
    Curr Pharm Des; 2014; 20(32):5118-26. PubMed ID: 24410561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities.
    Clinton SM; Meador-Woodruff JH
    Schizophr Res; 2004 Aug; 69(2-3):237-53. PubMed ID: 15469196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From glutamatergic dysfunction to cognitive impairment: boundaries in the therapeutic of the schizophrenia.
    Gaspar PA; Bustamante ML; Rojo LE; Martinez A
    Curr Pharm Biotechnol; 2012 Jun; 13(8):1543-8. PubMed ID: 22283759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imaging-based neurochemistry in schizophrenia: a systematic review and implications for dysfunctional long-term potentiation.
    Salavati B; Rajji TK; Price R; Sun Y; Graff-Guerrero A; Daskalakis ZJ
    Schizophr Bull; 2015 Jan; 41(1):44-56. PubMed ID: 25249654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dopamine-glutamate interaction and antipsychotics mechanism of action: implication for new pharmacological strategies in psychosis.
    de Bartolomeis A; Fiore G; Iasevoli F
    Curr Pharm Des; 2005; 11(27):3561-94. PubMed ID: 16248808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of action of antipsychotic drugs: from dopamine D(2) receptor antagonism to glutamate NMDA facilitation.
    Laruelle M; Frankle WG; Narendran R; Kegeles LS; Abi-Dargham A
    Clin Ther; 2005; 27 Suppl A():S16-24. PubMed ID: 16198197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Glutamatergic neurotransmission in schizophrenics].
    Bleich S; Bleich K; Wiltfang J; Maler JM; Kornhuber J
    Fortschr Neurol Psychiatr; 2001 Sep; 69 Suppl 2():S56-61. PubMed ID: 11533851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of the glutamate, GABA, and dopamine systems in relation to NRH-induced neurotoxicity.
    Benes FM
    Biol Psychiatry; 1995 Dec; 38(12):783-7. PubMed ID: 8750035
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.