These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Freestanding MOF-Derived Honeycomb-Shape Porous MnOC@CC as an Electrocatalyst for Reversible LiOH Chemistry in Li-O Huang Y; Liu Y; Tang D; Li W; Li J ACS Appl Mater Interfaces; 2023 May; 15(19):23115-23123. PubMed ID: 37129923 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical investigation of the role of MnO2 nanorod catalysts in water containing and anhydrous electrolytes for Li-O2 battery applications. Geaney H; O'Dwyer C Phys Chem Chem Phys; 2015 Mar; 17(10):6748-59. PubMed ID: 25640321 [TBL] [Abstract][Full Text] [Related]
9. Cycling Li-O₂ batteries via LiOH formation and decomposition. Liu T; Leskes M; Yu W; Moore AJ; Zhou L; Bayley PM; Kim G; Grey CP Science; 2015 Oct; 350(6260):530-3. PubMed ID: 26516278 [TBL] [Abstract][Full Text] [Related]
10. Understanding LiOH Chemistry in a Ruthenium-Catalyzed Li-O Liu T; Liu Z; Kim G; Frith JT; Garcia-Araez N; Grey CP Angew Chem Int Ed Engl; 2017 Dec; 56(50):16057-16062. PubMed ID: 29058366 [TBL] [Abstract][Full Text] [Related]
11. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries. Beyer H; Meini S; Tsiouvaras N; Piana M; Gasteiger HA Phys Chem Chem Phys; 2013 Jul; 15(26):11025-37. PubMed ID: 23715054 [TBL] [Abstract][Full Text] [Related]
12. Evolution of Li2O2 growth and its effect on kinetics of Li-O2 batteries. Xia C; Waletzko M; Chen L; Peppler K; Klar PJ; Janek J ACS Appl Mater Interfaces; 2014 Aug; 6(15):12083-92. PubMed ID: 25006701 [TBL] [Abstract][Full Text] [Related]
13. The influence of transition metal oxides on the kinetics of Li2O2 oxidation in Li-O2 batteries: high activity of chromium oxides. Yao KP; Lu YC; Amanchukwu CV; Kwabi DG; Risch M; Zhou J; Grimaud A; Hammond PT; Bardé F; Shao-Horn Y Phys Chem Chem Phys; 2014 Feb; 16(6):2297-304. PubMed ID: 24352578 [TBL] [Abstract][Full Text] [Related]
14. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
16. LiO Zhang X; Guo L; Gan L; Zhang Y; Wang J; Johnson LR; Bruce PG; Peng Z J Phys Chem Lett; 2017 May; 8(10):2334-2338. PubMed ID: 28481552 [TBL] [Abstract][Full Text] [Related]
17. A PtRu catalyzed rechargeable oxygen electrode for Li-O2 batteries: performance improvement through Li2O2 morphology control. Yang Y; Liu W; Wang Y; Wang X; Xiao L; Lu J; Zhuang L Phys Chem Chem Phys; 2014 Oct; 16(38):20618-23. PubMed ID: 25158000 [TBL] [Abstract][Full Text] [Related]
18. Unraveling the Reaction Interfaces and Intermediates of Ru-Catalyzed LiOH Decomposition in DMSO-Based Li-O Tang L; Li J; Zhang Y; Gao Z; Chen J; Liu T J Phys Chem Lett; 2022 Jan; 13(2):471-478. PubMed ID: 34995456 [TBL] [Abstract][Full Text] [Related]
19. TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries. Bergner BJ; Schürmann A; Peppler K; Garsuch A; Janek J J Am Chem Soc; 2014 Oct; 136(42):15054-64. PubMed ID: 25255228 [TBL] [Abstract][Full Text] [Related]
20. Catalytic Behavior of Lithium Nitrate in Li-O2 Cells. Sharon D; Hirsberg D; Afri M; Chesneau F; Lavi R; Frimer AA; Sun YK; Aurbach D ACS Appl Mater Interfaces; 2015 Aug; 7(30):16590-600. PubMed ID: 26158598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]