These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 22284521)
1. Application of bivariate statistics to full wine bottle diamagnetic screening data. Harley SJ; Lim V; Augustine MP Talanta; 2012 Jan; 89():484-9. PubMed ID: 22284521 [TBL] [Abstract][Full Text] [Related]
2. Using low frequency full bottle diamagnetic screening to study collectible wine. Harley SJ; Lim V; Stucky PA; Augustine MP Talanta; 2011 Oct; 85(5):2437-44. PubMed ID: 21962665 [TBL] [Abstract][Full Text] [Related]
3. Using low frequency dielectric absorption to screen full intact wine bottles. Harley SJ; Lim V; Augustine MP Anal Chim Acta; 2011 Sep; 702(2):188-94. PubMed ID: 21839196 [TBL] [Abstract][Full Text] [Related]
4. Colour and pigment composition of red wines obtained from co-maceration of Tempranillo and Graciano varieties. García-Marino M; Hernández-Hierro JM; Rivas-Gonzalo JC; Escribano-Bailón MT Anal Chim Acta; 2010 Feb; 660(1-2):134-42. PubMed ID: 20103154 [TBL] [Abstract][Full Text] [Related]
5. Analysis of wine volatile profile by purge-and-trap-gas chromatography-mass spectrometry. Application to the analysis of red and white wines from different Spanish regions. Aznar M; Arroyo T J Chromatogr A; 2007 Sep; 1165(1-2):151-7. PubMed ID: 17675046 [TBL] [Abstract][Full Text] [Related]
6. Impact of oxygen dissolved at bottling and transmitted through closures on the composition and sensory properties of a Sauvignon Blanc wine during bottle storage. Lopes P; Silva MA; Pons A; Tominaga T; Lavigne V; Saucier C; Darriet P; Teissedre PL; Dubourdieu D J Agric Food Chem; 2009 Nov; 57(21):10261-70. PubMed ID: 19886682 [TBL] [Abstract][Full Text] [Related]
7. Effect of bottle colour and storage conditions on browning of orange wine. Selli S; Canbaş A; Unal U Nahrung; 2002 Apr; 46(2):64-7. PubMed ID: 12017992 [TBL] [Abstract][Full Text] [Related]
8. Evidence of vintage effects on grape wines using 1H NMR-based metabolomic study. Lee JE; Hwang GS; Van Den Berg F; Lee CH; Hong YS Anal Chim Acta; 2009 Aug; 648(1):71-6. PubMed ID: 19616691 [TBL] [Abstract][Full Text] [Related]
9. Principal component and linear discriminant analyses of free amino acids and biogenic amines in hungarian wines. Héberger K; Csomós E; Simon-Sarkadi L J Agric Food Chem; 2003 Dec; 51(27):8055-60. PubMed ID: 14690396 [TBL] [Abstract][Full Text] [Related]
10. Classification and prediction of rice wines with different marked ages by using a voltammetric electronic tongue. Wei Z; Wang J; Ye L Biosens Bioelectron; 2011 Aug; 26(12):4767-73. PubMed ID: 21683570 [TBL] [Abstract][Full Text] [Related]
11. Identification of Jiangxi wines by three-dimensional fluorescence fingerprints. Wan Y; Pan F; Shen M Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():605-10. PubMed ID: 22868332 [TBL] [Abstract][Full Text] [Related]
12. Principal component analysis applied to Fourier transform infrared spectroscopy for the design of calibration sets for glycerol prediction models in wine and for the detection and classification of outlier samples. Nieuwoudt HH; Prior BA; Pretorius IS; Manley M; Bauer FF J Agric Food Chem; 2004 Jun; 52(12):3726-35. PubMed ID: 15186089 [TBL] [Abstract][Full Text] [Related]
13. Lead in wine. Kaufmann A Food Addit Contam; 1998; 15(4):437-45. PubMed ID: 9764214 [TBL] [Abstract][Full Text] [Related]
14. Towards rapid throughput NMR studies of full wine bottles. Sobieski DN; Mulvihill G; Broz JS; Augustine MP Solid State Nucl Magn Reson; 2006 Feb; 29(1-3):191-8. PubMed ID: 16226018 [TBL] [Abstract][Full Text] [Related]
15. Application of multivariate analysis and artificial neural networks for the differentiation of red wines from the Canary Islands according to the island of origin. Díaz C; Conde JE; Estévez D; Pérez Olivero SJ; Pérez Trujillo JP J Agric Food Chem; 2003 Jul; 51(15):4303-7. PubMed ID: 12848502 [TBL] [Abstract][Full Text] [Related]
16. Geographic classification of spanish and Australian tempranillo red wines by visible and near-infrared spectroscopy combined with multivariate analysis. Liu L; Cozzolino D; Cynkar WU; Gishen M; Colby CB J Agric Food Chem; 2006 Sep; 54(18):6754-9. PubMed ID: 16939336 [TBL] [Abstract][Full Text] [Related]
17. Phenolic contents and antioxidant activities of major Australian red wines throughout the winemaking process. Ginjom IR; D'Arcy BR; Caffin NA; Gidley MJ J Agric Food Chem; 2010 Sep; 58(18):10133-42. PubMed ID: 20804125 [TBL] [Abstract][Full Text] [Related]
18. Wine bottle colour and oxidative spoilage: whole bottle light exposure experiments under controlled and uncontrolled temperature conditions. Dias DA; Clark AC; Smith TA; Ghiggino KP; Scollary GR Food Chem; 2013 Jun; 138(4):2451-9. PubMed ID: 23497908 [TBL] [Abstract][Full Text] [Related]
19. Potential food allergens in wine: double-blind, placebo-controlled trial and basophil activation analysis. Rolland JM; Apostolou E; Deckert K; de Leon MP; Douglass JA; Glaspole IN; Bailey M; Stockley CS; O'Hehir RE Nutrition; 2006 Sep; 22(9):882-8. PubMed ID: 16928473 [TBL] [Abstract][Full Text] [Related]
20. Multivariate analysis of the polyphenol composition of Tempranillo and Graciano red wines. García-Marino M; Hernández-Hierro JM; Santos-Buelga C; Rivas-Gonzalo JC; Escribano-Bailón MT Talanta; 2011 Sep; 85(4):2060-6. PubMed ID: 21872058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]