BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 22284964)

  • 1. Antagonist muscle moment is increased in ACL deficient subjects during maximal dynamic knee extension.
    Alkjær T; Simonsen EB; Magnusson SP; Dyhre-Poulsen P; Aagaard P
    Knee; 2012 Oct; 19(5):633-9. PubMed ID: 22284964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antagonist muscle coactivation during isokinetic knee extension.
    Aagaard P; Simonsen EB; Andersen JL; Magnusson SP; Bojsen-Møller F; Dyhre-Poulsen P
    Scand J Med Sci Sports; 2000 Apr; 10(2):58-67. PubMed ID: 10755275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isokinetic muscle strength and capacity for muscular knee joint stabilization in elite sailors.
    Aagaard P; Simonsen EB; Beyer N; Larsson B; Magnusson P; Kjaer M
    Int J Sports Med; 1997 Oct; 18(7):521-5. PubMed ID: 9414075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of clinical and dynamic knee function in patients with anterior cruciate ligament deficiency.
    Patel RR; Hurwitz DE; Bush-Joseph CA; Bach BR; Andriacchi TP
    Am J Sports Med; 2003; 31(1):68-74. PubMed ID: 12531760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of movement speed and joint position on knee flexor torque in healthy and post-surgical subjects.
    Osternig LR; James CR; Bercades D
    Eur J Appl Physiol Occup Physiol; 1999 Jul; 80(2):100-6. PubMed ID: 10408319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA; Joosten A; Harlaar J
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contralateral hamstring (biceps femoris) coactivation patterns and anterior cruciate ligament dysfunction.
    Osternig LR; Caster BL; James CR
    Med Sci Sports Exerc; 1995 Jun; 27(6):805-8. PubMed ID: 7658940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of anterior cruciate ligament rupture on hamstring: quadriceps ratio during isokinetic knee extension and flexion at 30 degrees of flexion].
    Huang HS; Jiang YF; Yang J; Yu YY; Wang Y; Xu Y; Ao YF
    Beijing Da Xue Xue Bao Yi Xue Ban; 2015 Oct; 47(5):787-90. PubMed ID: 26474616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new concept for isokinetic hamstring: quadriceps muscle strength ratio.
    Aagaard P; Simonsen EB; Magnusson SP; Larsson B; Dyhre-Poulsen P
    Am J Sports Med; 1998; 26(2):231-7. PubMed ID: 9548116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A clinically applicable EMG-force model to quantify active stabilization of the knee after a lesion of the anterior cruciate ligament.
    Doorenbosch CA; Harlaar J
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):142-9. PubMed ID: 12550813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hamstring and quadriceps strength balance in normal and hamstring anterior cruciate ligament-reconstructed subjects.
    Hiemstra LA; Webber S; MacDonald PB; Kriellaars DJ
    Clin J Sport Med; 2004 Sep; 14(5):274-80. PubMed ID: 15377966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hamstring antagonist torque generated in vivo following ACL rupture and ACL reconstruction.
    Bryant AL; Creaby MW; Newton RU; Steele JR
    Knee; 2010 Aug; 17(4):287-90. PubMed ID: 20226677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-contraction during static and dynamic knee extensions in ACL deficient subjects.
    Aalbersberg S; Kingma I; Blankevoort L; van Dieën JH
    J Electromyogr Kinesiol; 2005 Aug; 15(4):349-57. PubMed ID: 15811605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic restraint capacity of the hamstring muscles has important functional implications after anterior cruciate ligament injury and anterior cruciate ligament reconstruction.
    Bryant AL; Creaby MW; Newton RU; Steele JR
    Arch Phys Med Rehabil; 2008 Dec; 89(12):2324-31. PubMed ID: 19061745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensatory muscle activity in the posterior cruciate ligament-deficient knee during isokinetic knee motion.
    Inoue M; Yasuda K; Yamanaka M; Wada T; Kaneda K
    Am J Sports Med; 1998; 26(5):710-4. PubMed ID: 9784820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait.
    Hurd WJ; Snyder-Mackler L
    J Orthop Res; 2007 Oct; 25(10):1369-77. PubMed ID: 17557321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knee joint movements in subjects without knee pathology and subjects with injured anterior cruciate ligaments.
    Hollman JH; Deusinger RH; Van Dillen LR; Matava MJ
    Phys Ther; 2002 Oct; 82(10):960-72. PubMed ID: 12350211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of anterior cruciate ligament rupture on the timing and amplitude of gastrocnemius muscle activation: a study of alterations in EMG measures and their relationship to knee joint stability.
    Klyne DM; Keays SL; Bullock-Saxton JE; Newcombe PA
    J Electromyogr Kinesiol; 2012 Jun; 22(3):446-55. PubMed ID: 22356847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology of knee extension torque-time curves following anterior cruciate ligament injury and reconstruction.
    Bryant AL; Pua YH; Clark RA
    J Bone Joint Surg Am; 2009 Jun; 91(6):1424-31. PubMed ID: 19487521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidation of a potentially destabilizing control strategy in ACL deficient non-copers.
    Chmielewski TL; Hurd WJ; Snyder-Mackler L
    J Electromyogr Kinesiol; 2005 Feb; 15(1):83-92. PubMed ID: 15642656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.