BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22285037)

  • 1. Efficacy of forming biofilms by naphthalene degrading Pseudomonas stutzeri T102 toward bioremediation technology and its molecular mechanisms.
    Shimada K; Itoh Y; Washio K; Morikawa M
    Chemosphere; 2012 Apr; 87(3):226-33. PubMed ID: 22285037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor.
    Collina E; Bestetti G; Di Gennaro P; Franzetti A; Gugliersi F; Lasagni M; Pitea D
    Environ Int; 2005 Feb; 31(2):167-71. PubMed ID: 15661278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation.
    Mrozik A; Labuzek S; Piotrowska-Seget Z
    Microbiol Res; 2005; 160(2):149-57. PubMed ID: 15881832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1.
    Viggiani A; Olivieri G; Siani L; Di Donato A; Marzocchella A; Salatino P; Barbieri P; Galli E
    J Biotechnol; 2006 Jun; 123(4):464-77. PubMed ID: 16490274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas stutzeri strain possessing a self-transmissible TOL-like plasmid degrades phenol and promotes maize growth in contaminated environments.
    Jiang Q; Zhou C; Wang Y; Si F; Zhou Y; Chen B; Zhao Y; Chen J; Xiao M
    Appl Biochem Biotechnol; 2014 Apr; 172(7):3461-75. PubMed ID: 24549803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Degradation characteristics of naphthalene with a Pseudomonas aeruginosa strain isolated from soil contaminated by diesel].
    Liu WC; Wu BB; Li XS; Lu DN; Liu YM
    Huan Jing Ke Xue; 2015 Feb; 36(2):712-8. PubMed ID: 26031103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet.
    Karamalidis AK; Evangelou AC; Karabika E; Koukkou AI; Drainas C; Voudrias EA
    Bioresour Technol; 2010 Aug; 101(16):6545-52. PubMed ID: 20400304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers.
    Tuomi PM; Salminen JM; Jørgensen KS
    FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of alkyl polyglycosides for enhanced bioremediation of petroleum hydrocarbon-contaminated soil using Sphingomonas changbaiensis and Pseudomonas stutzeri.
    Li Q; Huang Y; Wen D; Fu R; Feng L
    Sci Total Environ; 2020 Jun; 719():137456. PubMed ID: 32112951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Rhizosphere strain of Pseudomonas chlororaphis capable of degrading naphthalene in the presence of cobalt/nickel].
    Siunova TV; Anokhina TO; Mashukova AV; Kochetkov VV; Borodin AM
    Mikrobiologiia; 2007; 76(2):212-8. PubMed ID: 17583218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions.
    Dou J; Liu X; Ding A
    J Hazard Mater; 2009 Jun; 165(1-3):325-31. PubMed ID: 19013017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Naphthalene catabolism by biofilm forming marine bacterium Pseudomonas aeruginosa N6P6 and the role of quorum sensing in regulation of dioxygenase gene.
    Kumari S; Mangwani N; Das S
    J Appl Microbiol; 2021 Apr; 130(4):1217-1231. PubMed ID: 33025721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: the effectiveness of bioaugmentation and biostimulation approaches.
    Lima D; Viana P; André S; Chelinho S; Costa C; Ribeiro R; Sousa JP; Fialho AM; Viegas CA
    Chemosphere; 2009 Jan; 74(2):187-92. PubMed ID: 19004466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of naphthalene biodegradation on the adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil.
    Hwang G; Park SR; Lee CH; Ahn IS; Yoon YJ; Mhin BJ
    J Hazard Mater; 2009 Dec; 172(1):491-3. PubMed ID: 19656625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Naphthalene degradation by Pseudomonas sp. HOB1: in vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms.
    Pathak H; Kantharia D; Malpani A; Madamwar D
    J Hazard Mater; 2009 Jul; 166(2-3):1466-73. PubMed ID: 19167154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study.
    Trindade PV; Sobral LG; Rizzo AC; Leite SG; Soriano AU
    Chemosphere; 2005 Jan; 58(4):515-22. PubMed ID: 15620743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil.
    Hwang G; Ban YM; Lee CH; Chung CH; Ahn IS
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):91-6. PubMed ID: 18023561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ex situ bioremediation of oil-contaminated soil.
    Lin TC; Pan PT; Cheng SS
    J Hazard Mater; 2010 Apr; 176(1-3):27-34. PubMed ID: 20053499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the response of two Burkholderia fungorum strains grown as planktonic cells versus biofilm to dibenzothiophene and select polycyclic aromatic hydrocarbons.
    Khoei NS; Andreolli M; Lampis S; Vallini G; Turner RJ
    Can J Microbiol; 2016 Oct; 62(10):851-860. PubMed ID: 27505068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of organophosphate pesticide chloropyrifos by Egyptian bacterial isolates.
    Bayoumi RA; Mohamed E; Louboudy S; Hendawy A
    Commun Agric Appl Biol Sci; 2009; 74(1):177-95. PubMed ID: 20218527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.