BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22285088)

  • 1. Np(V) reduction by humic acid: contribution of reduced sulfur functionalities to the redox behavior of humic acid.
    Schmeide K; Sachs S; Bernhard G
    Sci Total Environ; 2012 Mar; 419():116-23. PubMed ID: 22285088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox and complexation interactions of neptunium(V) with quinonoid-enriched humic derivatives.
    Shcherbina NS; Perminova IV; Kalmykov SN; Kovalenko AN; Haire RG; Novikov AP
    Environ Sci Technol; 2007 Oct; 41(20):7010-5. PubMed ID: 17993141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction and reoxidation of humic acid: influence on speciation of cadmium and silver.
    Maurer F; Christl I; Hoffmann M; Kretzschmar R
    Environ Sci Technol; 2012 Aug; 46(16):8808-16. PubMed ID: 22809322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids.
    Aeschbacher M; Vergari D; Schwarzenbach RP; Sander M
    Environ Sci Technol; 2011 Oct; 45(19):8385-94. PubMed ID: 21823669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface complexation of Neptunium(V) onto whole cells and cell components of Shewanella alga: modeling and experimental study.
    Deo RP; Songkasiri W; Rittmann BE; Reed DT
    Environ Sci Technol; 2010 Jul; 44(13):4930-5. PubMed ID: 20521812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the effect of humic acid redox state on organic pollutant sorption by combined electrochemical reduction and sorption experiments.
    Aeschbacher M; Brunner SH; Schwarzenbach RP; Sander M
    Environ Sci Technol; 2012 Apr; 46(7):3882-90. PubMed ID: 22372874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Np(V) and Pu(v) ion exchange and surface-mediated reduction mechanisms on montmorillonite.
    Zavarin M; Powell BA; Bourbin M; Zhao P; Kersting AB
    Environ Sci Technol; 2012 Mar; 46(5):2692-8. PubMed ID: 22296270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant properties of humic substances.
    Aeschbacher M; Graf C; Schwarzenbach RP; Sander M
    Environ Sci Technol; 2012 May; 46(9):4916-25. PubMed ID: 22463073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel electrochemical approach to assess the redox properties of humic substances.
    Aeschbacher M; Sander M; Schwarzenbach RP
    Environ Sci Technol; 2010 Jan; 44(1):87-93. PubMed ID: 19950897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of natural purified humic acids in modifying mercury accessibility in water and soil.
    Cattani I; Zhang H; Beone GM; Del Re AA; Boccelli R; Trevisan M
    J Environ Qual; 2009; 38(2):493-501. PubMed ID: 19202019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. XANES spectroscopy studies of Cr(VI) reduction by thiols in organosulfur compounds and humic substances.
    Szulczewski MD; Helmke PA; Bleam WF
    Environ Sci Technol; 2001 Mar; 35(6):1134-41. PubMed ID: 11347925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humic acids as reducing agents: the involvement of quinoid moieties in arsenate reduction.
    Palmer NE; von Wandruszka R
    Environ Sci Pollut Res Int; 2010 Aug; 17(7):1362-70. PubMed ID: 20354802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term effects of amendment with liquid swine manure on proton binding behavior of soil humic substances.
    Plaza C; Hernández D; Fernández JM; Polo A
    Chemosphere; 2006 Nov; 65(8):1321-9. PubMed ID: 16735052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration of uranium(IV)/(VI) in the presence of humic acids in quartz sand: a laboratory column study.
    Mibus J; Sachs S; Pfingsten W; Nebelung C; Bernhard G
    J Contam Hydrol; 2007 Jan; 89(3-4):199-217. PubMed ID: 17052798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromate reduction on humic acid derived from a peat soil--exploration of the activated sites on HAs for chromate removal.
    Huang SW; Chiang PN; Liu JC; Hung JT; Kuan WH; Tzou YM; Wang SL; Huang JH; Chen CC; Wang MK; Loeppert RH
    Chemosphere; 2012 May; 87(6):587-94. PubMed ID: 22309710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper redox transformation and complexation by reduced and oxidized soil humic acid. 1. X-ray absorption spectroscopy study.
    Fulda B; Voegelin A; Maurer F; Christl I; Kretzschmar R
    Environ Sci Technol; 2013 Oct; 47(19):10903-11. PubMed ID: 24050649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH and ionic strength on the binding of paraquat and MCPA by soil fulvic and humic acids.
    Iglesias A; López R; Gondar D; Antelo J; Fiol S; Arce F
    Chemosphere; 2009 Jun; 76(1):107-13. PubMed ID: 19269671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid.
    Tighe M; Lockwood P; Wilson S
    J Environ Monit; 2005 Dec; 7(12):1177-85. PubMed ID: 16307069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and quantification of reversible redox sites in humic substances.
    Ratasuk N; Nanny MA
    Environ Sci Technol; 2007 Nov; 41(22):7844-50. PubMed ID: 18075097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of capillary zone electrophoresis for estimation of humate acid-base properties.
    Vanifatova NG; Zavarzina AG; Spivakov BY
    J Chromatogr A; 2008 Mar; 1183(1-2):186-91. PubMed ID: 18242623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.