BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22285250)

  • 1. Mesenchymal stem cells induced to secrete neurotrophic factors attenuate quinolinic acid toxicity: a potential therapy for Huntington's disease.
    Sadan O; Shemesh N; Barzilay R; Dadon-Nahum M; Blumenfeld-Katzir T; Assaf Y; Yeshurun M; Djaldetti R; Cohen Y; Melamed E; Offen D
    Exp Neurol; 2012 Apr; 234(2):417-27. PubMed ID: 22285250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adult neurotrophic factor-secreting stem cells: a potential novel therapy for neurodegenerative diseases.
    Sadan O; Shemesh N; Cohen Y; Melamed E; Offen D
    Isr Med Assoc J; 2009 Apr; 11(4):201-4. PubMed ID: 19603590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migration of neurotrophic factors-secreting mesenchymal stem cells toward a quinolinic acid lesion as viewed by magnetic resonance imaging.
    Sadan O; Shemesh N; Barzilay R; Bahat-Stromza M; Melamed E; Cohen Y; Offen D
    Stem Cells; 2008 Oct; 26(10):2542-51. PubMed ID: 18635865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone marrow mesenchymal stem cells can improve the motor function of a Huntington's disease rat model.
    Jiang Y; Lv H; Huang S; Tan H; Zhang Y; Li H
    Neurol Res; 2011 Apr; 33(3):331-7. PubMed ID: 21513650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease.
    Tattersfield AS; Croon RJ; Liu YW; Kells AP; Faull RL; Connor B
    Neuroscience; 2004; 127(2):319-32. PubMed ID: 15262322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microanatomical evidences for potential of mesenchymal stem cells in amelioration of striatal degeneration.
    Amin EM; Reza BA; Morteza BR; Maryam MM; Ali M; Zeinab N
    Neurol Res; 2008 Dec; 30(10):1086-90. PubMed ID: 18768110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine A2A receptor blockade before striatal excitotoxic lesions prevents long term behavioural disturbances in the quinolinic rat model of Huntington's disease.
    Scattoni ML; Valanzano A; Pezzola A; March ZD; Fusco FR; Popoli P; Calamandrei G
    Behav Brain Res; 2007 Jan; 176(2):216-21. PubMed ID: 17123640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal stem cell transplantation and DMEM administration in a 3NP rat model of Huntington's disease: morphological and behavioral outcomes.
    Rossignol J; Boyer C; Lévèque X; Fink KD; Thinard R; Blanchard F; Dunbar GL; Lescaudron L
    Behav Brain Res; 2011 Mar; 217(2):369-78. PubMed ID: 21070819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slowed progression in models of Huntington disease by adipose stem cell transplantation.
    Lee ST; Chu K; Jung KH; Im WS; Park JE; Lim HC; Won CH; Shin SH; Lee SK; Kim M; Roh JK
    Ann Neurol; 2009 Nov; 66(5):671-81. PubMed ID: 19938161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease.
    Vazey EM; Chen K; Hughes SM; Connor B
    Exp Neurol; 2006 Jun; 199(2):384-96. PubMed ID: 16626705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease.
    Dey ND; Bombard MC; Roland BP; Davidson S; Lu M; Rossignol J; Sandstrom MI; Skeel RL; Lescaudron L; Dunbar GL
    Behav Brain Res; 2010 Dec; 214(2):193-200. PubMed ID: 20493905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progressive behavioural changes in the spatial open-field in the quinolinic acid rat model of Huntington's disease.
    Scattoni ML; Valanzano A; Popoli P; Pezzola A; Reggio R; Calamandrei G
    Behav Brain Res; 2004 Jul; 152(2):375-83. PubMed ID: 15196806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human neural stem cell transplants improve motor function in a rat model of Huntington's disease.
    McBride JL; Behrstock SP; Chen EY; Jakel RJ; Siegel I; Svendsen CN; Kordower JH
    J Comp Neurol; 2004 Jul; 475(2):211-9. PubMed ID: 15211462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease.
    Sadan O; Bahat-Stromza M; Barhum Y; Levy YS; Pisnevsky A; Peretz H; Ilan AB; Bulvik S; Shemesh N; Krepel D; Cohen Y; Melamed E; Offen D
    Stem Cells Dev; 2009 Oct; 18(8):1179-90. PubMed ID: 19243240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model.
    Wakabayashi K; Nagai A; Sheikh AM; Shiota Y; Narantuya D; Watanabe T; Masuda J; Kobayashi S; Kim SU; Yamaguchi S
    J Neurosci Res; 2010 Apr; 88(5):1017-25. PubMed ID: 19885863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington's disease.
    Emerich DF; Winn SR; Hantraye PM; Peschanski M; Chen EY; Chu Y; McDermott P; Baetge EE; Kordower JH
    Nature; 1997 Mar; 386(6623):395-9. PubMed ID: 9121555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of transplant efficiency between spontaneously derived and noggin-primed human embryonic stem cell neural precursors in the quinolinic acid rat model of Huntington's disease.
    Vazey EM; Dottori M; Jamshidi P; Tomas D; Pera MF; Horne M; Connor B
    Cell Transplant; 2010; 19(8):1055-62. PubMed ID: 20350346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroprotective effect of a CNTF-expressing lentiviral vector in the quinolinic acid rat model of Huntington's disease.
    de Almeida LP; Zala D; Aebischer P; Déglon N
    Neurobiol Dis; 2001 Jun; 8(3):433-46. PubMed ID: 11442352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term lithium treatment promotes neuronal survival and proliferation in rat striatum infused with quinolinic acid, an excitotoxic model of Huntington's disease.
    Senatorov VV; Ren M; Kanai H; Wei H; Chuang DM
    Mol Psychiatry; 2004 Apr; 9(4):371-85. PubMed ID: 14702090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xenotransplantation of human adipose derived mesenchymal stem cells in a rodent model of Huntington's disease: motor and non-motor outcomes.
    Hosseini M; Moghadas M; Edalatmanesh MA; Hashemzadeh MR
    Neurol Res; 2015 Apr; 37(4):309-19. PubMed ID: 25376132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.