These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 22285518)

  • 1. Protein structure determination from pseudocontact shifts using ROSETTA.
    Schmitz C; Vernon R; Otting G; Baker D; Huber T
    J Mol Biol; 2012 Mar; 416(5):668-77. PubMed ID: 22285518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How reliable are pseudocontact shifts induced in proteins and ligands by mobile paramagnetic metal tags? A modelling study.
    Shishmarev D; Otting G
    J Biomol NMR; 2013 Jul; 56(3):203-16. PubMed ID: 23652856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure restraints from heteronuclear pseudocontact shifts generated by lanthanide tags at two different sites.
    Pearce BJG; Jabar S; Loh CT; Szabo M; Graham B; Otting G
    J Biomol NMR; 2017 May; 68(1):19-32. PubMed ID: 28434103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numbat: an interactive software tool for fitting Deltachi-tensors to molecular coordinates using pseudocontact shifts.
    Schmitz C; Stanton-Cook MJ; Su XC; Otting G; Huber T
    J Biomol NMR; 2008 Jul; 41(3):179-89. PubMed ID: 18574699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix.
    Bertini I; Janik MB; Lee YM; Luchinat C; Rosato A
    J Am Chem Soc; 2001 May; 123(18):4181-8. PubMed ID: 11457182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudocontact Shift-Driven Iterative Resampling for 3D Structure Determinations of Large Proteins.
    Pilla KB; Otting G; Huber T
    J Mol Biol; 2016 Jan; 428(2 Pt B):522-32. PubMed ID: 26778618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags.
    Abdelkader EH; Yao X; Feintuch A; Adams LA; Aurelio L; Graham B; Goldfarb D; Otting G
    J Biomol NMR; 2016 Jan; 64(1):39-51. PubMed ID: 26597990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient chi-tensor determination and NH assignment of paramagnetic proteins.
    Schmitz C; John M; Park AY; Dixon NE; Otting G; Pintacuda G; Huber T
    J Biomol NMR; 2006 Jun; 35(2):79-87. PubMed ID: 16767502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A protocol for the refinement of NMR structures using simultaneously pseudocontact shift restraints from multiple lanthanide ions.
    Sala D; Giachetti A; Luchinat C; Rosato A
    J Biomol NMR; 2016 Nov; 66(3):175-185. PubMed ID: 27771862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints.
    Hass MA; Ubbink M
    Curr Opin Struct Biol; 2014 Feb; 24():45-53. PubMed ID: 24721452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-Specific Tagging of Proteins with Paramagnetic Ions for Determination of Protein Structures in Solution and in Cells.
    Su XC; Chen JL
    Acc Chem Res; 2019 Jun; 52(6):1675-1686. PubMed ID: 31150202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magic angle spinning NMR structure determination of proteins from pseudocontact shifts.
    Li J; Pilla KB; Li Q; Zhang Z; Su X; Huber T; Yang J
    J Am Chem Soc; 2013 Jun; 135(22):8294-303. PubMed ID: 23646876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for measurements of pseudocontact shifts in protein NMR spectroscopy.
    John M; Otting G
    Chemphyschem; 2007 Nov; 8(16):2309-13. PubMed ID: 17910025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Structure Determination by Assembling Super-Secondary Structure Motifs Using Pseudocontact Shifts.
    Pilla KB; Otting G; Huber T
    Structure; 2017 Mar; 25(3):559-568. PubMed ID: 28216042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weak alignment of paramagnetic proteins warrants correction for residual CSA effects in measurements of pseudocontact shifts.
    John M; Park AY; Pintacuda G; Dixon NE; Otting G
    J Am Chem Soc; 2005 Dec; 127(49):17190-1. PubMed ID: 16332059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Lanthanide Tag for the Generation of Pseudocontact Shifts in DNA by Site-Specific Ligation to a Phosphorothioate Group.
    Wu Z; Lee MD; Carruthers TJ; Szabo M; Dennis ML; Swarbrick JD; Graham B; Otting G
    Bioconjug Chem; 2017 Jun; 28(6):1741-1748. PubMed ID: 28485576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Backbone-only restraints for fast determination of the protein fold: the role of paramagnetism-based restraints. Cytochrome b562 as an example.
    Banci L; Bertini I; Felli IC; Sarrou J
    J Magn Reson; 2005 Feb; 172(2):191-200. PubMed ID: 15649745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Protein Structure Determination Using Pseudocontact Shifts of Backbone Amide Protons Generated by Double-Histidine Co
    Bahramzadeh A; Huber T; Otting G
    Biochemistry; 2019 Jul; 58(30):3243-3250. PubMed ID: 31282649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR pseudocontact shifts in a symmetric protein homotrimer.
    Müntener T; Böhm R; Atz K; Häussinger D; Hiller S
    J Biomol NMR; 2020 Sep; 74(8-9):413-419. PubMed ID: 32621004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional protein fold determination from backbone amide pseudocontact shifts generated by lanthanide tags at multiple sites.
    Yagi H; Pilla KB; Maleckis A; Graham B; Huber T; Otting G
    Structure; 2013 Jun; 21(6):883-90. PubMed ID: 23643949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.