These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 22285801)
21. Point-source effects on N and P uptake in a forested and an agricultural Mediterranean streams. Merseburger G; Martí E; Sabater F; Ortiz JD Sci Total Environ; 2011 Feb; 409(5):957-67. PubMed ID: 21185586 [TBL] [Abstract][Full Text] [Related]
22. Peat soils as a source of lead contamination to upland fluvial systems. Rothwell JJ; Evans MG; Daniels SM; Allott TE Environ Pollut; 2008 Jun; 153(3):582-9. PubMed ID: 17949867 [TBL] [Abstract][Full Text] [Related]
23. The importance of ammonium mobility in nitrogen-impacted unfertilized grasslands: a critical reassessment. Mian IA; Riaz M; Cresser MS Environ Pollut; 2009 Apr; 157(4):1287-93. PubMed ID: 19117647 [TBL] [Abstract][Full Text] [Related]
24. Influence of the DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen transformation and leaching in multi-layer soil columns. Yu QG; Chen YX; Ye XZ; Tian GM; Zhang ZJ Chemosphere; 2007 Oct; 69(5):825-31. PubMed ID: 17624400 [TBL] [Abstract][Full Text] [Related]
25. Streamside management zones effectiveness for protecting water quality after forestland application of biosolids. Pratt WA; Fox TR J Environ Qual; 2009; 38(5):2106-20. PubMed ID: 19704153 [TBL] [Abstract][Full Text] [Related]
26. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Yao Y; Gao B; Zhang M; Inyang M; Zimmerman AR Chemosphere; 2012 Nov; 89(11):1467-71. PubMed ID: 22763330 [TBL] [Abstract][Full Text] [Related]
27. Impact of selected agricultural management options on the reduction of nitrogen loads in three representative meso scale catchments in Central Germany. Rode M; Thiel E; Franko U; Wenk G; Hesser F Sci Total Environ; 2009 May; 407(11):3459-72. PubMed ID: 19261322 [TBL] [Abstract][Full Text] [Related]
28. Over-parameterised, uncertain 'mathematical marionettes' - how can we best use catchment water quality models? An example of an 80-year catchment-scale nutrient balance. Wade AJ; Jackson BM; Butterfield D Sci Total Environ; 2008 Aug; 400(1-3):52-74. PubMed ID: 18538825 [TBL] [Abstract][Full Text] [Related]
29. The role of climate on inter-annual variation in stream nitrate fluxes and concentrations. Gascuel-Odoux C; Aurousseau P; Durand P; Ruiz L; Molenat J Sci Total Environ; 2010 Nov; 408(23):5657-66. PubMed ID: 19497610 [TBL] [Abstract][Full Text] [Related]
30. Use of (15)N-labelled nitrogen deposition to quantify the source of nitrogen in runoff at a coniferous-forested catchment at Gårdsjön, Sweden. Kjønaas OJ; Wright RF Environ Pollut; 2007 Jun; 147(3):791-9. PubMed ID: 17291646 [TBL] [Abstract][Full Text] [Related]
31. High fluvial export of dissolved organic nitrogen from a peatland catchment with elevated inorganic nitrogen deposition. Edokpa DA; Evans MG; Rothwell JJ Sci Total Environ; 2015 Nov; 532():711-22. PubMed ID: 26119385 [TBL] [Abstract][Full Text] [Related]
32. Stream water hydrochemistry as an indicator of carbon flow paths in Finnish peatland catchments during a spring snowmelt event. Dinsmore KJ; Billett MF; Dyson KE; Harvey F; Thomson AM; Piirainen S; Kortelainen P Sci Total Environ; 2011 Oct; 409(22):4858-67. PubMed ID: 21885090 [TBL] [Abstract][Full Text] [Related]
33. Arsenic retention and release in ombrotrophic peatlands. Rothwell JJ; Taylor KG; Ander EL; Evans MG; Daniels SM; Allott TE Sci Total Environ; 2009 Feb; 407(4):1405-17. PubMed ID: 19010516 [TBL] [Abstract][Full Text] [Related]
34. Contrasting controls on arsenic and lead budgets for a degraded peatland catchment in Northern England. Rothwell JJ; Taylor KG; Evans MG; Allott TE Environ Pollut; 2011 Oct; 159(10):3129-33. PubMed ID: 21683489 [TBL] [Abstract][Full Text] [Related]
35. Nitrogen leaching from soil treated with sludge. Sukreeyapongse O; Panichsakpatana S; Thongmarg J Water Sci Technol; 2001; 44(7):145-50. PubMed ID: 11724480 [TBL] [Abstract][Full Text] [Related]
36. Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity. Yallop AR; Clutterbuck B Sci Total Environ; 2009 Jun; 407(12):3803-13. PubMed ID: 19345986 [TBL] [Abstract][Full Text] [Related]
37. Impacts of climate change on in-stream nitrogen in a lowland chalk stream: an appraisal of adaptation strategies. Whitehead PG; Wilby RL; Butterfield D; Wade AJ Sci Total Environ; 2006 Jul; 365(1-3):260-73. PubMed ID: 16603230 [TBL] [Abstract][Full Text] [Related]
38. Potential acidifying capacity of deposition experiences from regions with high NH4+ and dry deposition in China. Vogt RD; Seip HM; Larssen T; Zhao D; Xiang R; Xiao J; Luo J; Zhao Y Sci Total Environ; 2006 Aug; 367(1):394-404. PubMed ID: 16515804 [TBL] [Abstract][Full Text] [Related]
39. Modelling nitrogen in the Yeşilirmak River catchment in Northern Turkey: impacts of future climate and environmental change and implications for nutrient management. Hadjikakou M; Whitehead PG; Jin L; Futter M; Hadjinicolaou P; Shahgedanova M Sci Total Environ; 2011 May; 409(12):2404-18. PubMed ID: 21458029 [TBL] [Abstract][Full Text] [Related]
40. Results of 10 years of monitoring nitrogen in the sandy regions in The Netherlands. Fraters D; Boumans LJ; van Leeuwen TC; de Hoop WD Water Sci Technol; 2005; 51(3-4):239-47. PubMed ID: 15850196 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]