These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22285878)

  • 1. Measurement and characterization of the human spinal cord SEEP response using event-related spinal fMRI.
    Figley CR; Stroman PW
    Magn Reson Imaging; 2012 May; 30(4):471-84. PubMed ID: 22285878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of retrospective spinal cord motion time-course estimates (RESPITE) for spin-echo spinal fMRI: Improved sensitivity and specificity by means of a motion-compensating general linear model analysis.
    Figley CR; Stroman PW
    Neuroimage; 2009 Jan; 44(2):421-7. PubMed ID: 18835581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cardiac-related noise in fMRI of the cervical spinal cord.
    Piché M; Cohen-Adad J; Nejad MK; Perlbarg V; Xie G; Beaudoin G; Benali H; Rainville P
    Magn Reson Imaging; 2009 Apr; 27(3):300-10. PubMed ID: 18801632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional magnetic resonance imaging of the human lumbar spinal cord.
    Moffitt MA; Dale BM; Duerk JL; Grill WM
    J Magn Reson Imaging; 2005 May; 21(5):527-35. PubMed ID: 15834921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional magnetic resonance imaging based on SEEP contrast: response function and anatomical specificity.
    Stroman PW; Kornelsen J; Lawrence J; Malisza KL
    Magn Reson Imaging; 2005 Oct; 23(8):843-50. PubMed ID: 16275422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional magnetic resonance imaging of the human brain based on signal enhancement by extravascular protons (SEEP fMRI).
    Stroman PW; Tomanek B; Krause V; Frankenstein UN; Malisza KL
    Magn Reson Med; 2003 Mar; 49(3):433-9. PubMed ID: 12594745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative comparison of BOLD fMRI responses to noxious and innocuous stimuli in the human spinal cord.
    Summers PE; Ferraro D; Duzzi D; Lui F; Iannetti GD; Porro CA
    Neuroimage; 2010 May; 50(4):1408-15. PubMed ID: 20096788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In contrast to BOLD: signal enhancement by extravascular water protons as an alternative mechanism of endogenous fMRI signal change.
    Figley CR; Leitch JK; Stroman PW
    Magn Reson Imaging; 2010 Oct; 28(8):1234-43. PubMed ID: 20299173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of physiological noise with independent component analysis improves the detection of nociceptive responses with fMRI of the human spinal cord.
    Xie G; Piché M; Khoshnejad M; Perlbarg V; Chen JI; Hoge RD; Benali H; Rossignol S; Rainville P; Cohen-Adad J
    Neuroimage; 2012 Oct; 63(1):245-52. PubMed ID: 22776463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigations on spinal cord fMRI of cats under ketamine.
    Cohen-Adad J; Hoge RD; Leblond H; Xie G; Beaudoin G; Song AW; Krueger G; Doyon J; Benali H; Rossignol S
    Neuroimage; 2009 Jan; 44(2):328-39. PubMed ID: 18938251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord functional MRI at 3 T: gradient echo echo-planar imaging versus turbo spin echo.
    Bouwman CJ; Wilmink JT; Mess WH; Backes WH
    Neuroimage; 2008 Nov; 43(2):288-96. PubMed ID: 18706507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional magnetic resonance imaging at 0.2 Tesla.
    Stroman PW; Malisza KL; Onu M
    Neuroimage; 2003 Oct; 20(2):1210-4. PubMed ID: 14568489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of speech-related variance in rapid event-related fMRI using a time-aware acquisition system.
    Mehta S; Grabowski TJ; Razavi M; Eaton B; Bolinger L
    Neuroimage; 2006 Feb; 29(4):1278-93. PubMed ID: 16412665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton-density-weighted spinal fMRI with sensorimotor stimulation at 0.2 T.
    Ng MC; Wong KK; Li G; Lai S; Yang ES; Hu Y; Luk KD
    Neuroimage; 2006 Feb; 29(3):995-9. PubMed ID: 16140548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal effects of acupuncture stimulation assessed by proton density-weighted functional magnetic resonance imaging at 0.2 T.
    Li G; Ng MC; Wong KK; Luk KD; Yang ES
    Magn Reson Imaging; 2005 Dec; 23(10):995-9. PubMed ID: 16376183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extravascular proton-density changes as a non-BOLD component of contrast in fMRI of the human spinal cord.
    Stroman PW; Krause V; Malisza KL; Frankenstein UN; Tomanek B
    Magn Reson Med; 2002 Jul; 48(1):122-7. PubMed ID: 12111939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PHYCAA: data-driven measurement and removal of physiological noise in BOLD fMRI.
    Churchill NW; Yourganov G; Spring R; Rasmussen PM; Lee W; Ween JE; Strother SC
    Neuroimage; 2012 Jan; 59(2):1299-314. PubMed ID: 21871573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive observation of cervical spinal cord activity in children by functional MRI during cold thermal stimulation.
    Lawrence JM; Kornelsen J; Stroman PW
    Magn Reson Imaging; 2011 Jul; 29(6):813-8. PubMed ID: 21571475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of data acquisition parameters, and analysis techniques for noise reduction in spinal cord fMRI data.
    Bosma RL; Stroman PW
    Magn Reson Imaging; 2014 Jun; 32(5):473-81. PubMed ID: 24602827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SSFSE sequence functional MRI of the human cervical spinal cord with complex finger tapping.
    Xie CH; Kong KM; Guan JT; Chen YX; He JK; Qi WL; Wang XJ; Shen ZW; Wu RH
    Eur J Radiol; 2009 Apr; 70(1):1-6. PubMed ID: 18353589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.