These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 22286023)

  • 1. Instrumented roll technology for the design space development of roller compaction process.
    Nesarikar VV; Vatsaraj N; Patel C; Early W; Pandey P; Sprockel O; Gao Z; Jerzewski R; Miller R; Levin M
    Int J Pharm; 2012 Apr; 426(1-2):116-131. PubMed ID: 22286023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roller compaction process development and scale up using Johanson model calibrated with instrumented roll data.
    Nesarikar VV; Patel C; Early W; Vatsaraj N; Sprockel O; Jerzweski R
    Int J Pharm; 2012 Oct; 436(1-2):486-507. PubMed ID: 22721851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameter estimation for roller compaction process using an instrumented vector TF mini roller compactor.
    Reddy JP; Phanse R; Nesarikar V
    Pharm Dev Technol; 2019 Dec; 24(10):1250-1257. PubMed ID: 31437082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation into the impact of magnesium stearate on powder feeding during roller compaction.
    Dawes J; Gamble JF; Greenwood R; Robbins P; Tobyn M
    Drug Dev Ind Pharm; 2012 Jan; 38(1):111-22. PubMed ID: 21810064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of lubrication on density distributions of roller compacted ribbons.
    Miguélez-Morán AM; Wu CY; Seville JP
    Int J Pharm; 2008 Oct; 362(1-2):52-9. PubMed ID: 18602976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roller compaction scale-up using roll width as scale factor and laser-based determined ribbon porosity as critical material attribute.
    Allesø M; Holm R; Holm P
    Eur J Pharm Sci; 2016 May; 87():69-78. PubMed ID: 26545485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction.
    Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J
    Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared monitoring of roller compacted ribbon density: Investigating sources of variation contributing to noisy spectral data.
    Crowley ME; Hegarty A; McAuliffe MAP; O'Mahony GE; Kiernan L; Hayes K; Crean AM
    Eur J Pharm Sci; 2017 May; 102():103-114. PubMed ID: 28216342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength.
    He X; Secreast PJ; Amidon GE
    J Pharm Sci; 2007 May; 96(5):1342-55. PubMed ID: 17455360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of density distributions in roller-compacted ribbons using micro-indentation and X-ray micro-computed tomography.
    Miguélez-Morán AM; Wu CY; Dong H; Seville JP
    Eur J Pharm Biopharm; 2009 May; 72(1):173-82. PubMed ID: 19130881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roller compaction: Ribbon splitting and sticking.
    Mahmah O; Adams MJ; Omar CS; Gururajan B; Salman AD
    Int J Pharm; 2019 Mar; 559():156-172. PubMed ID: 30682449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders.
    Yu S; Gururajan B; Reynolds G; Roberts R; Adams MJ; Wu CY
    Int J Pharm; 2012 May; 428(1-2):39-47. PubMed ID: 22402475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting.
    Khorasani M; Amigo JM; Sun CC; Bertelsen P; Rantanen J
    Eur J Pharm Biopharm; 2015 Jun; 93():293-302. PubMed ID: 25917640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roller compactor: The effect of mechanical properties of primary particles.
    Al-Asady RB; Osborne JD; Hounslow MJ; Salman AD
    Int J Pharm; 2015 Dec; 496(1):124-36. PubMed ID: 26024822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of roll compaction design, process parameters, and material deformation behaviour on ribbon relative density.
    Csordas K; Wiedey R; Kleinebudde P
    Drug Dev Ind Pharm; 2018 Aug; 44(8):1295-1306. PubMed ID: 29484952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of API concentration on the roller compaction process: modeling and prediction of the post compacted ribbon, granule and tablet properties using multivariate data analysis.
    Boersen N; Carvajal MT; Morris KR; Peck GE; Pinal R
    Drug Dev Ind Pharm; 2015; 41(9):1470-8. PubMed ID: 25212638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Commercial scale validation of a process scale-up model for lubricant blending of pharmaceutical powders.
    Kushner J; Schlack H
    Int J Pharm; 2014 Nov; 475(1-2):147-55. PubMed ID: 25152166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modified mechanistic approach for predicting ribbon solid fraction at different roller compaction speeds.
    Li J; Tseng YC; Paul S
    Int J Pharm; 2024 Jul; 660():124366. PubMed ID: 38901541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of external lubrication during the roller compaction of adhesive pharmaceutical formulations.
    Dawes J; Allenspach C; Gamble JF; Greenwood R; Robbins P; Tobyn M
    Pharm Dev Technol; 2013 Feb; 18(1):246-56. PubMed ID: 22813432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of screw-to-roll speed ratio on ribbon porosity during roll compaction.
    Olaleye B; Wu CY; Liu LX
    Int J Pharm; 2020 Oct; 588():119770. PubMed ID: 32805384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.