These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 22286023)
41. Compaction behaviour and new predictive approach to the compressibility of binary mixtures of pharmaceutical excipients. Busignies V; Leclerc B; Porion P; Evesque P; Couarraze G; Tchoreloff P Eur J Pharm Biopharm; 2006 Aug; 64(1):66-74. PubMed ID: 16697171 [TBL] [Abstract][Full Text] [Related]
42. In-line quantification of drug and excipients in cohesive powder blends by near infrared spectroscopy. Liew CV; Karande AD; Heng PW Int J Pharm; 2010 Feb; 386(1-2):138-48. PubMed ID: 19922776 [TBL] [Abstract][Full Text] [Related]
43. Influence of compacted hydrophobic and hydrophilic colloidal silicon dioxide on tableting properties of pharmaceutical excipients. Jonat S; Hasenzahl S; Gray A; Schmidt PC Drug Dev Ind Pharm; 2005 Aug; 31(7):687-96. PubMed ID: 16207616 [TBL] [Abstract][Full Text] [Related]
44. Energy-based analysis of cone milling process for the comminution of roller compacted flakes. Samanta AK; Wang L; Ng KY; Heng PW Int J Pharm; 2014 Feb; 462(1-2):108-14. PubMed ID: 24374608 [TBL] [Abstract][Full Text] [Related]
45. Mixing order of glidant and lubricant--influence on powder and tablet properties. Pingali K; Mendez R; Lewis D; Michniak-Kohn B; Cuitino A; Muzzio F Int J Pharm; 2011 May; 409(1-2):269-77. PubMed ID: 21356286 [TBL] [Abstract][Full Text] [Related]
46. A study of a new co-processed dry binder based on spray-dried lactose and microcrystalline cellulose. Mužíková J; Sináglová P Ceska Slov Farm; 2013 Jun; 62(3):127-31. PubMed ID: 23961814 [TBL] [Abstract][Full Text] [Related]
47. Modeling the effects of material properties on tablet compaction: A building block for controlling both batch and continuous pharmaceutical manufacturing processes. Escotet-Espinoza MS; Vadodaria S; Singh R; Muzzio FJ; Ierapetritou MG Int J Pharm; 2018 May; 543(1-2):274-287. PubMed ID: 29567195 [TBL] [Abstract][Full Text] [Related]
48. Simplifying Johanson's roller compaction model to build a "Virtual Roller Compactor" as a predictive tool - Theory and practical application. So C; Leung LY; Muliadi AR; Narang AS; Mao C Int J Pharm; 2021 May; 601():120579. PubMed ID: 33839226 [TBL] [Abstract][Full Text] [Related]
49. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645 [TBL] [Abstract][Full Text] [Related]
50. Excipient-process interactions and their impact on tablet compaction and film coating. Pandey P; Bindra DS; Gour S; Trinh J; Buckley D; Badawy S J Pharm Sci; 2014 Nov; 103(11):3666-3674. PubMed ID: 25223603 [TBL] [Abstract][Full Text] [Related]
51. Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression. Farber L; Hapgood KP; Michaels JN; Fu XY; Meyer R; Johnson MA; Li F Int J Pharm; 2008 Jan; 346(1-2):17-24. PubMed ID: 17689211 [TBL] [Abstract][Full Text] [Related]
52. Comparative binder efficiency modeling of dry granulation binders using roller compaction. Gupte A; DeHart M; Stagner WC; Haware RV Drug Dev Ind Pharm; 2017 Apr; 43(4):574-583. PubMed ID: 27977316 [TBL] [Abstract][Full Text] [Related]
53. Investigation of an artificial intelligence technology--Model trees. Novel applications for an immediate release tablet formulation database. Shao Q; Rowe RC; York P Eur J Pharm Sci; 2007 Jun; 31(2):137-44. PubMed ID: 17452096 [TBL] [Abstract][Full Text] [Related]
54. A STUDY OF COMPRESSION PROCESS AND PROPERTIES OF TABLETS WITH MICROCRYSTALLINE CELLULOSE AND COLLOIDAL SILICON DIOXIDE. Muzikova J; Louzenska M; Pekarek T Acta Pol Pharm; 2016 Sep; 73(5):1259-1265. PubMed ID: 29638066 [TBL] [Abstract][Full Text] [Related]
55. A quantitative correlation of the effect of density distributions in roller-compacted ribbons on the mechanical properties of tablets using ultrasonics and X-ray tomography. Akseli I; Iyer S; Lee HP; Cuitiño AM AAPS PharmSciTech; 2011 Sep; 12(3):834-53. PubMed ID: 21710336 [TBL] [Abstract][Full Text] [Related]
56. A novel method for estimating solid fraction of roller-compacted ribbons. Nkansah P; Wu SJ; Sobotka S; Yamamoto K; Shao ZJ Drug Dev Ind Pharm; 2008 Feb; 34(2):142-8. PubMed ID: 18302032 [TBL] [Abstract][Full Text] [Related]
57. Optimization of the process variables of roller compaction, on the basis of granules characteristics (flow, mechanical strength, and disintegration behavior): an application of SeDeM-ODT expert system. Khan A Drug Dev Ind Pharm; 2019 Sep; 45(9):1537-1546. PubMed ID: 31210544 [TBL] [Abstract][Full Text] [Related]
58. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug. Alyami H; Dahmash E; Bowen J; Mohammed AR PLoS One; 2017; 12(6):e0178772. PubMed ID: 28609454 [TBL] [Abstract][Full Text] [Related]
59. Prediction of the compressibility of complex mixtures of pharmaceutical powders. Busignies V; Mazel V; Diarra H; Tchoreloff P Int J Pharm; 2012 Oct; 436(1-2):862-8. PubMed ID: 22759643 [TBL] [Abstract][Full Text] [Related]
60. Application of thermal effusivity as a process analytical technology tool for monitoring and control of the roller compaction process. Ghorab MK; Chatlapalli R; Hasan S; Nagi A AAPS PharmSciTech; 2007 Mar; 8(1):23. PubMed ID: 17408222 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]