These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 2228613)

  • 1. Atmospheric deposition, resuspension, and root uptake of Pu in corn and other grain-producing agroecosystems near a nuclear fuel facility.
    Pinder JE; McLeod KW; Adriano DC; Corey JC; Boni AL
    Health Phys; 1990 Dec; 59(6):853-67. PubMed ID: 2228613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The accuracy of some simple models for predicting particulate interception and retention in agricultural systems.
    Pinder JE; McLeod KW; Adriano DC
    Health Phys; 1989 Apr; 56(4):441-50. PubMed ID: 2925383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plutonium contents of broadleaf vegetable crops grown near a nuclear fuel chemical separations facility.
    McLeod KW; Alberts JJ; Adriano DC; Pinder JE
    Health Phys; 1984 Feb; 46(2):261-7. PubMed ID: 6693256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention of 238Pu-bearing particles by corn plants.
    Pinder JE; Doswell AC
    Health Phys; 1985 Nov; 49(5):771-6. PubMed ID: 4066339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of a nuclear fuel chemical separations facility to the plutonium content of a tobacco crop.
    McLeod KW; Pinder JE; Watts JR
    Health Phys; 1984 Jun; 46(6):1205-11. PubMed ID: 6724933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake, distribution, and velocity of organically complexed plutonium in corn (Zea mays).
    Thompson SW; Molz FJ; Fjeld RA; Kaplan DI
    J Environ Radioact; 2012 Oct; 112():133-40. PubMed ID: 22717315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interrelationships among plant biomass, plant surface area and the interception of particulate deposition by grasses.
    Pinder JE; Ciravolo TG; Bowling JW
    Health Phys; 1988 Jul; 55(1):51-8. PubMed ID: 3391777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources for Pu in near surface air.
    Hartmann G; Thom C; Bächmann K
    Health Phys; 1989 Jan; 56(1):55-69. PubMed ID: 2909504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Influence of Iron and Ligand Type on Plutonium Uptake in Two Strains of Hydroponically Grown Corn ( Zea Mays ).
    Phillips SH; Donaher SE; Powell BA; Tharayil N; Martinez NE
    Health Phys; 2023 Feb; 124(2):97-105. PubMed ID: 36487184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radionuclide transport from soil to air, native vegetation, kangaroo rats and grazing cattle on the Nevada test site.
    Gilbert RO; Shinn JH; Essington EH; Tamura T; Romney EM; Moor KS; O'Farrell TP
    Health Phys; 1988 Dec; 55(6):869-87. PubMed ID: 3198397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plants as bio-monitors for Cs-137, Pu-238, Pu-239,240 and K-40 at the Savannah River Site.
    Caldwell EF; Duff MC; Ferguson CE; Coughlin DP
    J Environ Monit; 2011 May; 13(5):1410-21. PubMed ID: 21412545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New isotopic evidence of lead contamination in wheat grain from atmospheric fallout.
    Yang J; Chen T; Lei M; Zhou X; Huang Q; Ma C; Gu R; Guo G
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):14710-6. PubMed ID: 25982979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plutonium in the WIPP environment: its detection, distribution and behavior.
    Thakur P; Ballard S; Nelson R
    J Environ Monit; 2012 May; 14(6):1604-15. PubMed ID: 22549140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site.
    Dai M; Buesseler KO; Pike SM
    J Contam Hydrol; 2005 Feb; 76(3-4):167-89. PubMed ID: 15683879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 238Pu and 239+240Pu inventory and distribution through the lower Rhone valley terrestrial environment (Southern France).
    Duffa C; Renaud P
    Sci Total Environ; 2005 Sep; 348(1-3):164-72. PubMed ID: 16162322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plutonium in wildlife and soils at the Maralinga legacy site: persistence over decadal time scales.
    Johansen MP; Child DP; Davis E; Doering C; Harrison JJ; Hotchkis MA; Payne TE; Thiruvoth S; Twining JR; Wood MD
    J Environ Radioact; 2014 May; 131():72-80. PubMed ID: 24238919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plutonium isotopic signatures in soils and their variation (2011-2014) in sediment transiting a coastal river in the Fukushima Prefecture, Japan.
    Jaegler H; Pointurier F; Onda Y; Hubert A; Laceby JP; Cirella M; Evrard O
    Environ Pollut; 2018 Sep; 240():167-176. PubMed ID: 29734077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relative importance of uptake and surface adherence in determining the radionuclide contents of subterranean crops.
    Corey JC; Boni AL; Watts JR; Adriano DC; McLeod KW; Pinder JE
    Health Phys; 1983 Jan; 44(1):19-28. PubMed ID: 6826362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of fallout (236)U and (239)Pu uptake by Australian vegetation.
    Froehlich MB; Dietze MM; Tims SG; Fifield LK
    J Environ Radioact; 2016 Jan; 151 Pt 3():558-62. PubMed ID: 26141188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for a comprehensive assessment of exposure and lifetime cancer incidence risk from plutonium released from the Rocky Flats Plant, 1953-1989.
    Rood AS; Grogan HA; Till JE
    Health Phys; 2002 Feb; 82(2):182-212. PubMed ID: 11797893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.