These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2228613)

  • 21. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway.
    Wendel CC; Fifield LK; Oughton DH; Lind OC; Skipperud L; Bartnicki J; Tims SG; Høibråten S; Salbu B
    Environ Int; 2013 Sep; 59():92-102. PubMed ID: 23792418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plutonium uptake and behavior in vegetation of the desert southwest: a preliminary assessment.
    Caldwell E; Duff M; Ferguson C; Coughlin D
    J Environ Monit; 2011 Sep; 13(9):2575-81. PubMed ID: 21796316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review of parameter values used to assess the transport of plutonium, uranium, and thorium in terrestrial food chains.
    Garten CT
    Environ Res; 1978 Dec; 17(3):437-52. PubMed ID: 400973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interception and retention of 238Pu deposition by orange trees.
    Pinder JE; Adriano DC; Ciravolo TG; Doswell AC; Yehling DM
    Health Phys; 1987 Jun; 52(6):707-15. PubMed ID: 3583736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitivity analysis of ECOSYS-87: an emphasis on the ingestion pathway as a function of radionuclide and type of deposition.
    Hinton TG
    Health Phys; 1994 May; 66(5):513-31. PubMed ID: 8175358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pu(V) transport through Savannah River Site soils - an evaluation of a conceptual model of surface- mediated reduction to Pu (IV).
    Powell BA; Kaplan DI; Serkiz SM; Coates JT; Fjeld RA
    J Environ Radioact; 2014 May; 131():47-56. PubMed ID: 24238838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of natural organic matter on iodine and (239)(,240)Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan.
    Xu C; Zhang S; Sugiyama Y; Ohte N; Ho YF; Fujitake N; Kaplan DI; Yeager CM; Schwehr K; Santschi PH
    J Environ Radioact; 2016 Mar; 153():156-166. PubMed ID: 26773510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inventory and vertical distribution of
    Bouisset P; Nohl M; Bouville A; Leclerc G
    J Environ Radioact; 2018 Mar; 183():82-93. PubMed ID: 29306711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plutonium isotopes in the terrestrial environment at the Savannah River Site, USA: a long-term study.
    Armstrong CR; Nuessle PR; Brant HA; Hall G; Halverson JE; Cadieux JR
    Environ Sci Technol; 2015 Feb; 49(3):1286-93. PubMed ID: 25535652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uptake of Plutonium-238 into Solanum tuberosum L. (potato plants) in presence of complexing agent EDTA.
    Tawussi F; Gupta DK; Mühr-Ebert EL; Schneider S; Bister S; Walther C
    J Environ Radioact; 2017 Nov; 178-179():186-192. PubMed ID: 28865328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathway: a dynamic food-chain model to predict radionuclide ingestion after fallout deposition.
    Whicker FW; Kirchner TB
    Health Phys; 1987 Jun; 52(6):717-37. PubMed ID: 3583737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plutonium immobilization and remobilization by soil mineral and organic matter in the far-field of the Savannah River Site, U.S.
    Xu C; Athon M; Ho YF; Chang HS; Zhang S; Kaplan DI; Schwehr KA; DiDonato N; Hatcher PG; Santschi PH
    Environ Sci Technol; 2014 Mar; 48(6):3186-95. PubMed ID: 24555528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mass loading of soil particles on plant surfaces.
    Pinder JE; McLeod KW
    Health Phys; 1989 Dec; 57(6):935-42. PubMed ID: 2584028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation Tests of Resuspension Models for a Finite and Infinite Site.
    Whicker JJ; McNaughton M; Ruedig E; Fuehne DP
    Health Phys; 2019 Oct; 117(4):408-415. PubMed ID: 31033709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of techniques used to estimate the amount of resuspended soil on plant surfaces.
    Hinton TG; Kopp P; Ibrahim S; Bubryak I; Syomov A; Tobler L; Bell C
    Health Phys; 1995 Apr; 68(4):523-31. PubMed ID: 7883564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Risk estimates for deterministic health effects of inhaled weapons grade plutonium.
    Scott BR; Peterson VL
    Health Phys; 2003 Sep; 85(3):280-93. PubMed ID: 12938719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Dosage of irradiation of the population in the Bryansk region with plutonium deposited in the soil after the Chernobyl AES accident].
    Ivanova NP; Shvydko NS
    Med Radiol (Mosk); 1991; 36(9):4-6. PubMed ID: 1834903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fate of Plutonium at a Former Nuclear Testing Site in Australia.
    Ikeda-Ohno A; Shahin LM; Howard DL; Collins RN; Payne TE; Johansen MP
    Environ Sci Technol; 2016 Sep; 50(17):9098-104. PubMed ID: 27548999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The transfer of fallout plutonium from paddy soil to rice: A field study in Japan.
    Ni Y; Wang Z; Zheng J; Tagami K; Guo Q; Uchida S; Tsukada H
    J Environ Radioact; 2019 Jan; 196():22-28. PubMed ID: 30368198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiocaesium transfer from volcanic soils to Swiss chard, cabbage and sweet corn.
    Schuller P; Castillo A; Voigt G; Semioshkina N
    J Environ Radioact; 2018 Dec; 192():117-127. PubMed ID: 29929170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.