BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 22286610)

  • 1. Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla.
    Song X; Hu X; Ji P; Li Y; Chi G; Song Y
    Bull Environ Contam Toxicol; 2012 Apr; 88(4):623-6. PubMed ID: 22286610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cornstalk biochar on phytoremediation of Cd-contaminated soil by Beta vulgaris var. cicla L.
    Gu P; Zhang Y; Xie H; Wei J; Zhang X; Huang X; Wang J; Lou X
    Ecotoxicol Environ Saf; 2020 Dec; 205():111144. PubMed ID: 32846295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of bacteria on cadmium bioaccumulation in the cadmium hyperaccumulator plant Beta vulgaris var. cicla L.
    Chen S; Chao L; Sun L; Sun T
    Int J Phytoremediation; 2013; 15(5):477-87. PubMed ID: 23488173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L.
    Ji P; Sun T; Song Y; Ackland ML; Liu Y
    Environ Pollut; 2011 Mar; 159(3):762-8. PubMed ID: 21185631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.
    Broadhurst CL; Chaney RL; Davis AP; Cox A; Kumar K; Reeves RD; Green CE
    Int J Phytoremediation; 2015; 17(1-6):25-39. PubMed ID: 25174422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L.
    Wei S; Li Y; Zhou Q; Srivastava M; Chiu S; Zhan J; Wu Z; Sun T
    J Hazard Mater; 2010 Apr; 176(1-3):269-73. PubMed ID: 19951826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A two-year field study of phytoremediation using Solanum nigrum L. in China.
    Ji P; Song Y; Jiang Y; Tang X; Tong Y; Gao P; Han W
    Int J Phytoremediation; 2016 Sep; 18(9):924-8. PubMed ID: 27064185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation potential of Solanum nigrum L. under different cultivation protocols.
    Qu G; Tong Y; Gao P; Zhao Z; Song X; Ji P
    Bull Environ Contam Toxicol; 2013 Sep; 91(3):306-9. PubMed ID: 23778778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation.
    Wei S; Zhou Q; Koval PV
    Sci Total Environ; 2006 Oct; 369(1-3):441-6. PubMed ID: 16859734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ cadmium phytoremediation using Solanum nigrum L.: the bio-accumulation characteristics trail.
    Ji P; Song Y; Sun T; Liu Y; Cao X; Xu D; Yang X; McRae T
    Int J Phytoremediation; 2011; 13(10):1014-23. PubMed ID: 21972568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of amendments of N, P, Fe on phytoextraction of Cd, Pb, Cu, and Zn in soil of Zhangshi by mustard, cabbage, and sugar beet.
    Sun L; Niu Z; Sun T
    Environ Toxicol; 2007 Dec; 22(6):565-71. PubMed ID: 18000847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils.
    Mani D; Kumar C; Patel NK
    Int J Phytoremediation; 2015; 17(1-6):256-63. PubMed ID: 25397984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ochrobactrum intermedium and saponin assisted phytoremediation of Cd and B[a]P co-contaminated soil by Cd-hyperaccumulator Sedum alfredii.
    Tao Q; Li J; Liu Y; Luo J; Xu Q; Li B; Li Q; Li T; Wang C
    Chemosphere; 2020 Apr; 245():125547. PubMed ID: 31864950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India.
    Kumar Sharma R; Agrawal M; Marshall F
    Ecotoxicol Environ Saf; 2007 Feb; 66(2):258-66. PubMed ID: 16466660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium.
    Hu Y; Nan Z; Jin C; Wang N; Luo H
    Int J Phytoremediation; 2014; 16(5):482-95. PubMed ID: 24912230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Youngia erythrocarpa, a newly discovered cadmium hyperaccumulator plant.
    Lin L; Ning B; Liao M; Ren Y; Wang Z; Liu Y; Cheng J; Luo L
    Environ Monit Assess; 2015 Jan; 187(1):4205. PubMed ID: 25504193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.
    Sun Y; Zhou Q; Diao C
    Bioresour Technol; 2008 Mar; 99(5):1103-10. PubMed ID: 17719774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies.
    Deng L; Li Z; Wang J; Liu H; Li N; Wu L; Hu P; Luo Y; Christie P
    Int J Phytoremediation; 2016; 18(2):134-40. PubMed ID: 26445166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium and other metal uptake by Lobelia chinensis and Solanum nigrum from contaminated soils.
    Peng KJ; Luo CL; Chen YH; Wang GP; Li XD; Shen ZG
    Bull Environ Contam Toxicol; 2009 Aug; 83(2):260-4. PubMed ID: 19290449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils.
    Cao L; Jiang M; Zeng Z; Du A; Tan H; Liu Y
    Chemosphere; 2008 Apr; 71(9):1769-73. PubMed ID: 18342911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.