These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22286712)

  • 41. Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil.
    Gupta SK; Lal D; Lal R
    Int J Syst Evol Microbiol; 2009 Jan; 59(Pt 1):156-61. PubMed ID: 19126741
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novosphingobium ginsenosidimutans sp. nov., with the ability to convert ginsenoside.
    Kim JK; He D; Liu QM; Park HY; Jung MS; Yoon MH; Kim SC; Im WT
    J Microbiol Biotechnol; 2013 Apr; 23(4):444-50. PubMed ID: 23568197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermophilic production of polyhydroxyalkanoates by a novel Aneurinibacillus strain isolated from Gudao oilfield, China.
    Xiao Z; Zhang Y; Xi L; Huo F; Zhao JY; Li J
    J Basic Microbiol; 2015 Sep; 55(9):1125-33. PubMed ID: 25832555
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Medium chain length polyhydroxyalkanoates biosynthesis in Pseudomonas putida mt-2 is enhanced by co-metabolism of glycerol/octanoate or fatty acids mixtures.
    Fontaine P; Mosrati R; Corroler D
    Int J Biol Macromol; 2017 May; 98():430-435. PubMed ID: 28174083
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Co-production of polyhydroxyalkanoates and carotenoids through bioconversion of glycerol by Paracoccus sp. strain LL1.
    Kumar P; Jun HB; Kim BS
    Int J Biol Macromol; 2018 Feb; 107(Pt B):2552-2558. PubMed ID: 29079434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novosphingobium marinum sp. nov., isolated from seawater.
    Huo YY; You H; Li ZY; Wang CS; Xu XW
    Int J Syst Evol Microbiol; 2015 Feb; 65(Pt 2):676-680. PubMed ID: 25424486
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of short-chain-length polyhydroxyalkanoate accumulation in Bacillus aryabhattai.
    Balakrishna Pillai A; Jaya Kumar A; Thulasi K; Kumarapillai H
    Braz J Microbiol; 2017; 48(3):451-460. PubMed ID: 28359856
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of Polyhydroxyalkanoates from Sludge Palm Oil Using
    Kang DK; Lee CR; Lee SH; Bae JH; Park YK; Rhee YH; Sung BH; Sohn JH
    J Microbiol Biotechnol; 2017 May; 27(5):990-994. PubMed ID: 28274100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fed-Batch
    Borrero-de Acuña JM; Rohde M; Saldias C; Poblete-Castro I
    Front Bioeng Biotechnol; 2021; 9():642023. PubMed ID: 33796510
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Poly(3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction.
    Ibrahim MH; Steinbüchel A
    Appl Environ Microbiol; 2009 Oct; 75(19):6222-31. PubMed ID: 19666728
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cost-effective defined medium for the production of polyhydroxyalkanoates using agricultural raw materials.
    Suwannasing W; Imai T; Kaewkannetra P
    Bioresour Technol; 2015 Oct; 194():67-74. PubMed ID: 26185927
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyhydroxyalkanoates (PHAs) degradation by the newly isolated marine Bacillus sp. JY14.
    Cho JY; Lee Park S; Lee HJ; Kim SH; Suh MJ; Ham S; Bhatia SK; Gurav R; Park SH; Park K; Yoo D; Yang YH
    Chemosphere; 2021 Nov; 283():131172. PubMed ID: 34157624
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microbial selection strategies for polyhydroxyalkanoates production from crude glycerol: Effect of OLR and cycle length.
    Freches A; Lemos PC
    N Biotechnol; 2017 Oct; 39(Pt A):22-28. PubMed ID: 28587886
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process.
    Tiirola MA; Busse HJ; Kämpfer P; Männistö MK
    Int J Syst Evol Microbiol; 2005 Mar; 55(Pt 2):583-588. PubMed ID: 15774628
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of nutritional supplements on bio-plastics (PHB) production utilizing sugar refinery waste with potential application in food packaging.
    Tripathi AD; Raj Joshi T; Kumar Srivastava S; Darani KK; Khade S; Srivastava J
    Prep Biochem Biotechnol; 2019; 49(6):567-577. PubMed ID: 30929621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of granule-associated protein PhaP on glycerol-dependent growth and polymer production in poly(3-hydroxybutyrate)-producing Escherichia coli.
    de Almeida A; Nikel PI; Giordano AM; Pettinari MJ
    Appl Environ Microbiol; 2007 Dec; 73(24):7912-6. PubMed ID: 17965215
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater.
    Addison SL; Foote SM; Reid NM; Lloyd-Jones G
    Int J Syst Evol Microbiol; 2007 Nov; 57(Pt 11):2467-2471. PubMed ID: 17978201
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A
    Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosynthesis of polyhydroxyalkanotes in wild type yeasts.
    Abd-El-Haleem DA
    Pol J Microbiol; 2009; 58(1):37-41. PubMed ID: 19469284
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Formation of polyhydroxyalkanoates during the dual-nutrient-limited zone by Ralstonia eutropha].
    Yan Q; Du GC; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):497-501. PubMed ID: 15969073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.