These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22286756)

  • 1. Evaluation and properties of the budding yeast phosphoproteome.
    Amoutzias GD; He Y; Lilley KS; Van de Peer Y; Oliver SG
    Mol Cell Proteomics; 2012 Jun; 11(6):M111.009555. PubMed ID: 22286756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein kinases associated with the yeast phosphoproteome.
    Brinkworth RI; Munn AL; Kobe B
    BMC Bioinformatics; 2006 Jan; 7():47. PubMed ID: 16445868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of eisosome core components.
    Mascaraque V; Hernáez ML; Jiménez-Sánchez M; Hansen R; Gil C; Martín H; Cid VJ; Molina M
    Mol Cell Proteomics; 2013 Mar; 12(3):557-74. PubMed ID: 23221999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteome analysis in yeast.
    Ray R; Haystead TA
    Methods Enzymol; 2003; 366():95-103. PubMed ID: 14674242
    [No Abstract]   [Full Text] [Related]  

  • 5. Comprehensive Analysis of in Vivo Phosphoproteome of Mouse Liver Microsomes.
    Kwon OK; Sim J; Kim SJ; Sung E; Kim JY; Jeong TC; Lee S
    J Proteome Res; 2015 Dec; 14(12):5215-24. PubMed ID: 26487105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quest for the Crypto-phosphoproteome.
    Ahn S; Jung H; Kee JM
    Chembiochem; 2021 Jan; 22(2):319-325. PubMed ID: 33094900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae.
    Schreiber TB; Mäusbacher N; Soroka J; Wandinger SK; Buchner J; Daub H
    J Proteome Res; 2012 Apr; 11(4):2397-408. PubMed ID: 22369663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Pivotal Role of Protein Phosphorylation in the Control of Yeast Central Metabolism.
    Vlastaridis P; Papakyriakou A; Chaliotis A; Stratikos E; Oliver SG; Amoutzias GD
    G3 (Bethesda); 2017 Apr; 7(4):1239-1249. PubMed ID: 28250014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cell cycle phosphoproteome of the yeast centrosome.
    Keck JM; Jones MH; Wong CC; Binkley J; Chen D; Jaspersen SL; Holinger EP; Xu T; Niepel M; Rout MP; Vogel J; Sidow A; Yates JR; Winey M
    Science; 2011 Jun; 332(6037):1557-61. PubMed ID: 21700874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-depth and 3-dimensional exploration of the budding yeast phosphoproteome.
    Lanz MC; Yugandhar K; Gupta S; Sanford EJ; Faça VM; Vega S; Joiner AMN; Fromme JC; Yu H; Smolka MB
    EMBO Rep; 2021 Feb; 22(2):e51121. PubMed ID: 33491328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative features of the yeast phosphoproteome and protein-protein interaction map.
    Yachie N; Saito R; Sugiyama N; Tomita M; Ishihama Y
    PLoS Comput Biol; 2011 Jan; 7(1):e1001064. PubMed ID: 21298081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic analysis of protein phosphorylation networks from phosphoproteomic data.
    Song C; Ye M; Liu Z; Cheng H; Jiang X; Han G; Songyang Z; Tan Y; Wang H; Ren J; Xue Y; Zou H
    Mol Cell Proteomics; 2012 Oct; 11(10):1070-83. PubMed ID: 22798277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-depth phosphoproteomic analysis of royal jelly derived from western and eastern honeybee species.
    Han B; Fang Y; Feng M; Lu X; Huo X; Meng L; Wu B; Li J
    J Proteome Res; 2014 Dec; 13(12):5928-43. PubMed ID: 25265229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cdc14 and PP2A Phosphatases Cooperate to Shape Phosphoproteome Dynamics during Mitotic Exit.
    Touati SA; Hofbauer L; Jones AW; Snijders AP; Kelly G; Uhlmann F
    Cell Rep; 2019 Nov; 29(7):2105-2119.e4. PubMed ID: 31722221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in Saccharomyces cerevisiae.
    Huang D; Piening BD; Kennedy JJ; Lin C; Jones-Weinert CW; Yan P; Paulovich AG
    Genetics; 2016 May; 203(1):353-68. PubMed ID: 27017623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening.
    Zeng Y; Pan Z; Wang L; Ding Y; Xu Q; Xiao S; Deng X
    Physiol Plant; 2014 Feb; 150(2):252-70. PubMed ID: 23786612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning of Global Phosphoproteomic Profiles Enables Discrimination of Direct versus Indirect Kinase Substrates.
    Kanshin E; Giguère S; Jing C; Tyers M; Thibault P
    Mol Cell Proteomics; 2017 May; 16(5):786-798. PubMed ID: 28265048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the phosphoproteome of mature Arabidopsis pollen.
    Mayank P; Grossman J; Wuest S; Boisson-Dernier A; Roschitzki B; Nanni P; Nühse T; Grossniklaus U
    Plant J; 2012 Oct; 72(1):89-101. PubMed ID: 22631563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes.
    Vlastaridis P; Kyriakidou P; Chaliotis A; Van de Peer Y; Oliver SG; Amoutzias GD
    Gigascience; 2017 Feb; 6(2):1-11. PubMed ID: 28327990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of cdc14 dephosphorylation sites reveals essential regulatory role in mitosis and cytokinesis.
    Kao L; Wang YT; Chen YC; Tseng SF; Jhang JC; Chen YJ; Teng SC
    Mol Cell Proteomics; 2014 Feb; 13(2):594-605. PubMed ID: 24319056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.