These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Chen MY; Lie PC; Li ZL; Wei X Exp Hematol; 2009 May; 37(5):629-40. PubMed ID: 19375653 [TBL] [Abstract][Full Text] [Related]
6. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. Chong PP; Selvaratnam L; Abbas AA; Kamarul T J Orthop Res; 2012 Apr; 30(4):634-42. PubMed ID: 21922534 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the osteogenic capacity of minipig and human bone marrow-derived mesenchymal stem cells. Heino TJ; Alm JJ; Moritz N; Aro HT J Orthop Res; 2012 Jul; 30(7):1019-25. PubMed ID: 22570220 [TBL] [Abstract][Full Text] [Related]
8. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Panepucci RA; Siufi JL; Silva WA; Proto-Siquiera R; Neder L; Orellana M; Rocha V; Covas DT; Zago MA Stem Cells; 2004; 22(7):1263-78. PubMed ID: 15579645 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Kern S; Eichler H; Stoeve J; Klüter H; Bieback K Stem Cells; 2006 May; 24(5):1294-301. PubMed ID: 16410387 [TBL] [Abstract][Full Text] [Related]
10. Comparison of multipotent differentiation potentials of murine primary bone marrow stromal cells and mesenchymal stem cell line C3H10T1/2. Zhao L; Li G; Chan KM; Wang Y; Tang PF Calcif Tissue Int; 2009 Jan; 84(1):56-64. PubMed ID: 19052794 [TBL] [Abstract][Full Text] [Related]
11. Comparison of in vitro hepatogenic differentiation potential between various placenta-derived stem cells and other adult stem cells as an alternative source of functional hepatocytes. Lee HJ; Jung J; Cho KJ; Lee CK; Hwang SG; Kim GJ Differentiation; 2012 Oct; 84(3):223-31. PubMed ID: 22885322 [TBL] [Abstract][Full Text] [Related]
12. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Liu TM; Martina M; Hutmacher DW; Hui JH; Lee EH; Lim B Stem Cells; 2007 Mar; 25(3):750-60. PubMed ID: 17095706 [TBL] [Abstract][Full Text] [Related]
13. Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion. Mauney JR; Volloch V; Kaplan DL Biomaterials; 2005 Nov; 26(31):6167-75. PubMed ID: 15913765 [TBL] [Abstract][Full Text] [Related]
14. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Martin-Rendon E; Sweeney D; Lu F; Girdlestone J; Navarrete C; Watt SM Vox Sang; 2008 Aug; 95(2):137-48. PubMed ID: 18557828 [TBL] [Abstract][Full Text] [Related]
15. The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro. Shen B; Wei A; Whittaker S; Williams LA; Tao H; Ma DD; Diwan AD J Cell Biochem; 2010 Feb; 109(2):406-16. PubMed ID: 19950204 [TBL] [Abstract][Full Text] [Related]
16. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Dicker A; Le Blanc K; Aström G; van Harmelen V; Götherström C; Blomqvist L; Arner P; Rydén M Exp Cell Res; 2005 Aug; 308(2):283-90. PubMed ID: 15925364 [TBL] [Abstract][Full Text] [Related]