These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22287045)

  • 1. The use of an electrostatic lens to enhance the efficiency of the electrospinning process.
    Vaquette C; Cooper-White J
    Cell Tissue Res; 2012 Mar; 347(3):815-26. PubMed ID: 22287045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering.
    Vaquette C; Kahn C; Frochot C; Nouvel C; Six JL; De Isla N; Luo LH; Cooper-White J; Rahouadj R; Wang X
    J Biomed Mater Res A; 2010 Sep; 94(4):1270-82. PubMed ID: 20694995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning.
    Soliman S; Pagliari S; Rinaldi A; Forte G; Fiaccavento R; Pagliari F; Franzese O; Minieri M; Di Nardo P; Licoccia S; Traversa E
    Acta Biomater; 2010 Apr; 6(4):1227-37. PubMed ID: 19887125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospinning of Biosyn(®)-based tubular conduits: structural, morphological, and mechanical characterizations.
    Thomas V; Donahoe T; Nyairo E; Dean DR; Vohra YK
    Acta Biomater; 2011 May; 7(5):2070-9. PubMed ID: 21232639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple method for fabricating 3-D multilayered composite scaffolds.
    Vaquette C; Cooper-White J
    Acta Biomater; 2013 Jan; 9(1):4599-608. PubMed ID: 22902817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thick soft tissue reconstruction on highly perfusive biodegradable scaffolds.
    Mandoli C; Mecheri B; Forte G; Pagliari F; Pagliari S; Carotenuto F; Fiaccavento R; Rinaldi A; Di Nardo P; Licoccia S; Traversa E
    Macromol Biosci; 2010 Feb; 10(2):127-38. PubMed ID: 19890887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter.
    Grey CP; Newton ST; Bowlin GL; Haas TW; Simpson DG
    Biomaterials; 2013 Jul; 34(21):4993-5006. PubMed ID: 23602367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel soy protein scaffolds for tissue regeneration: Material characterization and interaction with human mesenchymal stem cells.
    Chien KB; Shah RN
    Acta Biomater; 2012 Feb; 8(2):694-703. PubMed ID: 22019761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering.
    Rnjak-Kovacina J; Wise SG; Li Z; Maitz PK; Young CJ; Wang Y; Weiss AS
    Biomaterials; 2011 Oct; 32(28):6729-36. PubMed ID: 21683438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of tensile load on in vitro degradation of an electrospun poly(L-lactide-co-glycolide) scaffold.
    Li P; Feng X; Jia X; Fan Y
    Acta Biomater; 2010 Aug; 6(8):2991-6. PubMed ID: 20170760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions.
    Ngadiman NHA; Noordin MY; Idris A; Kurniawan D
    Proc Inst Mech Eng H; 2017 Jul; 231(7):597-616. PubMed ID: 28347262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties.
    Moroni L; de Wijn JR; van Blitterswijk CA
    Biomaterials; 2006 Mar; 27(7):974-85. PubMed ID: 16055183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold.
    Kim GH
    Biomed Mater; 2008 Jun; 3(2):025010. PubMed ID: 18458365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique.
    Vaz CM; van Tuijl S; Bouten CV; Baaijens FP
    Acta Biomater; 2005 Sep; 1(5):575-82. PubMed ID: 16701837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering.
    Jin G; Prabhakaran MP; Ramakrishna S
    Acta Biomater; 2011 Aug; 7(8):3113-22. PubMed ID: 21550425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun scaffold topography affects endothelial cell proliferation, metabolic activity, and morphology.
    Heath DE; Lannutti JJ; Cooper SL
    J Biomed Mater Res A; 2010 Sep; 94(4):1195-204. PubMed ID: 20694986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds.
    Moroni L; Licht R; de Boer J; de Wijn JR; van Blitterswijk CA
    Biomaterials; 2006 Oct; 27(28):4911-22. PubMed ID: 16762409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells.
    Shafiee A; Soleimani M; Chamheidari GA; Seyedjafari E; Dodel M; Atashi A; Gheisari Y
    J Biomed Mater Res A; 2011 Dec; 99(3):467-78. PubMed ID: 21887742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.