These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 22287245)
1. In-depth analysis and evaluation of diffusive glioma models. Roniotis A; Sakkalis V; Karatzanis I; Zervakis ME; Marias K IEEE Trans Inf Technol Biomed; 2012 May; 16(3):299-307. PubMed ID: 22287245 [TBL] [Abstract][Full Text] [Related]
2. Comparing finite elements and finite differences for developing diffusive models of glioma growth. Roniotis A; Marias K; Sakkalis V; Stamatakos G; Zervakis M Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6797-800. PubMed ID: 21095843 [TBL] [Abstract][Full Text] [Related]
3. A complete mathematical study of a 3D model of heterogeneous and anisotropic glioma evolution. Roniotis A; Marias K; Sakkalis V; Tsibidis GD; Zervakis M Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2807-10. PubMed ID: 19964265 [TBL] [Abstract][Full Text] [Related]
4. High-grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases. Roniotis A; Manikis GC; Sakkalis V; Zervakis ME; Karatzanis I; Marias K IEEE Trans Inf Technol Biomed; 2012 Mar; 16(2):255-63. PubMed ID: 21990337 [TBL] [Abstract][Full Text] [Related]
5. Mathematical modeling of efficient protocols to control glioma growth. Branco JR; Ferreira JA; de Oliveira P Math Biosci; 2014 Sep; 255():83-90. PubMed ID: 25057777 [TBL] [Abstract][Full Text] [Related]
7. Simulating radiotherapy effect in high-grade glioma by using diffusive modeling and brain atlases. Roniotis A; Marias K; Sakkalis V; Manikis GC; Zervakis M J Biomed Biotechnol; 2012; 2012():715812. PubMed ID: 23093856 [TBL] [Abstract][Full Text] [Related]
8. Brain glioma growth model using reaction-diffusion equation with viscous stress tensor on brain MR images. Yuan J; Liu L Magn Reson Imaging; 2016 Feb; 34(2):114-9. PubMed ID: 26518060 [TBL] [Abstract][Full Text] [Related]
9. Mathematical modeling of glioma on MRI. Mandonnet E Rev Neurol (Paris); 2011 Oct; 167(10):715-20. PubMed ID: 21890155 [TBL] [Abstract][Full Text] [Related]
10. A model of cell migration within the extracellular matrix based on a phenotypic switching mechanism. Chauviere A; Preziosi L; Byrne H Math Med Biol; 2010 Sep; 27(3):255-81. PubMed ID: 19942606 [TBL] [Abstract][Full Text] [Related]
11. A mathematical model of dynamic glioma-host interactions: receptor-mediated invasion and local proteolysis. MacArthur BD; Please CP; Pettet GJ Math Med Biol; 2005 Sep; 22(3):247-64. PubMed ID: 16043631 [TBL] [Abstract][Full Text] [Related]
12. Biophysical modeling of brain tumor progression: from unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for model calibration. Mang A; Toma A; Schuetz TA; Becker S; Eckey T; Mohr C; Petersen D; Buzug TM Med Phys; 2012 Jul; 39(7):4444-59. PubMed ID: 22830777 [TBL] [Abstract][Full Text] [Related]
13. Mathematical modeling of the malignancy of cancer using graph evolution. Gunduz-Demir C Math Biosci; 2007 Oct; 209(2):514-27. PubMed ID: 17462676 [TBL] [Abstract][Full Text] [Related]
14. On assessing quality of therapy in non-linear distributed mathematical models for brain tumor growth dynamics. Bratus AS; Fimmel E; Kovalenko SY Math Biosci; 2014 Feb; 248():88-96. PubMed ID: 24384228 [TBL] [Abstract][Full Text] [Related]
15. Multiscale modeling for image analysis of brain tumor studies. Bauer S; May C; Dionysiou D; Stamatakos G; Büchler P; Reyes M IEEE Trans Biomed Eng; 2012 Jan; 59(1):25-9. PubMed ID: 21813362 [TBL] [Abstract][Full Text] [Related]
16. Mathematically modeling the biological properties of gliomas: A review. Martirosyan NL; Rutter EM; Ramey WL; Kostelich EJ; Kuang Y; Preul MC Math Biosci Eng; 2015 Aug; 12(4):879-905. PubMed ID: 25974347 [TBL] [Abstract][Full Text] [Related]
17. Identification of intrinsic in vitro cellular mechanisms for glioma invasion. Tektonidis M; Hatzikirou H; Chauvière A; Simon M; Schaller K; Deutsch A J Theor Biol; 2011 Oct; 287():131-47. PubMed ID: 21816160 [TBL] [Abstract][Full Text] [Related]
18. An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas. Gholami A; Mang A; Biros G J Math Biol; 2016 Jan; 72(1-2):409-33. PubMed ID: 25963601 [TBL] [Abstract][Full Text] [Related]
19. A mathematical model for pattern formation of glioma cells outside the tumor spheroid core. Kim Y; Lawler S; Nowicki MO; Chiocca EA; Friedman A J Theor Biol; 2009 Oct; 260(3):359-71. PubMed ID: 19596356 [TBL] [Abstract][Full Text] [Related]
20. A recursive anisotropic fast marching approach to reaction diffusion equation: application to tumor growth modeling. Konukoglu E; Sermesant M; Clatz O; Peyrat JM; Delingette H; Ayache N Inf Process Med Imaging; 2007; 20():687-99. PubMed ID: 17633740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]