These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2228753)

  • 1. Stability of resonance EEG reactions to flickering light in humans.
    Fedotchev AI; Bondar AT; Konovalov VF
    Int J Psychophysiol; 1990 Sep; 9(2):189-93. PubMed ID: 2228753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Photoinduced resonance phenomena in the human electroencephalogram as a function of frequency, intensity, and duration of stimulation].
    Fedotchev AI
    Biofizika; 2001; 46(1):112-7. PubMed ID: 11236550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal sequence of frequency specific and nonspecific effects of flickering lights upon the occipital electrical activity in man.
    Yaguchi K; Iwahara S
    Brain Res; 1976 Apr; 107(1):27-38. PubMed ID: 1268722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Resonance phenomena to rhythmic light stimulation with various intensity and frequency in human EEG].
    Fedotchev AI; Bondar' AT; Akoev IG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2001; 51(1):17-23. PubMed ID: 11253395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of intermittent photostimulation of varying frequency on the formation of trace processes and spectral components in the human EEG].
    Bondar' AT; Konovalov VF; Fedotchev AI
    Fiziol Zh SSSR Im I M Sechenova; 1988 Apr; 74(4):466-77. PubMed ID: 3396711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena.
    Herrmann CS
    Exp Brain Res; 2001 Apr; 137(3-4):346-53. PubMed ID: 11355381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The resonance EEG reactions in rhythmical photostimulation and the changes in functional status].
    Fedotchev AI; Bondar' AT; Maevskiĭ AA; Iakupova LP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1996; 46(3):447-56. PubMed ID: 8755047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the power spectrum of physiological finger tremor frequency with flickering light.
    Isokawa-Akesson M; Komisaruk BR
    J Neurosci Res; 1985; 14(3):373-80. PubMed ID: 4057289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.
    Bayram A; Bayraktaroglu Z; Karahan E; Erdogan B; Bilgic B; Ozker M; Kasikci I; Duru AD; Ademoglu A; Oztürk C; Arikan K; Tarhan N; Demiralp T
    Clin EEG Neurosci; 2011 Apr; 42(2):98-106. PubMed ID: 21675599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple spatial-frequency tuning of electrical responses from human visual cortex.
    Tyler CW; Apkarian P; Nakayama K
    Exp Brain Res; 1978 Nov; 33(3-4):535-50. PubMed ID: 729663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Triple-Flash Illusion Reveals a Driving Role of Alpha-Band Reverberations in Visual Perception.
    Gulbinaite R; İlhan B; VanRullen R
    J Neurosci; 2017 Jul; 37(30):7219-7230. PubMed ID: 28663196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preservation of alpha rhythm shortly after photic driving.
    Sakamoto H; Inouye T; Shinosaki K
    Int J Neurosci; 1993 Dec; 73(3-4):227-33. PubMed ID: 8169058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirp stimulation: H-response short and dynamic.
    Gantenbein AR; Sandor PS; Goadsby PJ; Kaube H
    Cephalalgia; 2014 Jun; 34(7):554-8. PubMed ID: 24391117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between BOLD-fMRI and EEG signal changes in response to visual stimulus frequency in humans.
    Singh M; Kim S; Kim TS
    Magn Reson Med; 2003 Jan; 49(1):108-14. PubMed ID: 12509825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photic driving in the electroencephalogram of children and adolescents: harmonic structure and relation to the resting state.
    Lazarev VV; Simpson DM; Schubsky BM; Deazevedo LC
    Braz J Med Biol Res; 2001 Dec; 34(12):1573-84. PubMed ID: 11717711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographic aspects of photic driving in the electroencephalogram of children and adolescents.
    Lazarev VV; Infantosi AF; Valencio-de-Campos D; deAzevedo LC
    Braz J Med Biol Res; 2004 Jun; 37(6):879-91. PubMed ID: 15264032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 6 Hz fundamental stimulation frequency rate for individual face discrimination in the right occipito-temporal cortex.
    Alonso-Prieto E; Belle GV; Liu-Shuang J; Norcia AM; Rossion B
    Neuropsychologia; 2013 Nov; 51(13):2863-75. PubMed ID: 24007879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic electroencephalographic findings by photic driving in patients with migraine-associated vertigo.
    Goto F; Oishi N; Tsutsumi T; Ito T; Arai M; Ogawa K
    Acta Otolaryngol; 2013 Mar; 133(3):253-6. PubMed ID: 23106596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of rhythmic photic interference on the working electroencephalogram and efficiency of human movements].
    Petrenko ET; Ermukhametova LA
    Kosm Biol Aviakosm Med; 1986; 20(1):22-5. PubMed ID: 3951173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between intermittent photic stimulation and auditory stimulation on the human EEG. Preliminary investigation through power spectral analysis.
    San Martini P; Venturini R; Zapponi GA; Loizzo A
    Neuropsychobiology; 1979; 5(4):201-6. PubMed ID: 440556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.