These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Swellix: a computational tool to explore RNA conformational space. Sloat N; Liu JW; Schroeder SJ BMC Bioinformatics; 2017 Nov; 18(1):504. PubMed ID: 29157200 [TBL] [Abstract][Full Text] [Related]
5. Evolutionary Algorithm for RNA Secondary Structure Prediction Based on Simulated SHAPE Data. Montaseri S; Ganjtabesh M; Zare-Mirakabad F PLoS One; 2016; 11(11):e0166965. PubMed ID: 27893832 [TBL] [Abstract][Full Text] [Related]
6. Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction. Janssen S; Schudoma C; Steger G; Giegerich R BMC Bioinformatics; 2011 Nov; 12():429. PubMed ID: 22051375 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic matchers: strengthening the significance of RNA folding energies. Höchsmann T; Höchsmann M; Giegerich R Comput Syst Bioinformatics Conf; 2006; ():111-21. PubMed ID: 17369630 [TBL] [Abstract][Full Text] [Related]
8. RAFFT: Efficient prediction of RNA folding pathways using the fast Fourier transform. Opuu V; Merleau NSC; Messow V; Smerlak M PLoS Comput Biol; 2022 Aug; 18(8):e1010448. PubMed ID: 36026505 [TBL] [Abstract][Full Text] [Related]
9. [Formation of spatial structure of RNA molecules]. Leonova EI; Baranov MV; Galzitskaia OV Mol Biol (Mosk); 2012; 46(1):37-51. PubMed ID: 22642100 [TBL] [Abstract][Full Text] [Related]
10. Analysis of energy-based algorithms for RNA secondary structure prediction. Hajiaghayi M; Condon A; Hoos HH BMC Bioinformatics; 2012 Feb; 13():22. PubMed ID: 22296803 [TBL] [Abstract][Full Text] [Related]
11. Characteristic chemical probing patterns of loop motifs improve prediction accuracy of RNA secondary structures. Cao J; Xue Y Nucleic Acids Res; 2021 May; 49(8):4294-4307. PubMed ID: 33849076 [TBL] [Abstract][Full Text] [Related]
12. RNA secondary structure prediction using deep learning with thermodynamic integration. Sato K; Akiyama M; Sakakibara Y Nat Commun; 2021 Feb; 12(1):941. PubMed ID: 33574226 [TBL] [Abstract][Full Text] [Related]
13. Integrating chemical footprinting data into RNA secondary structure prediction. Zarringhalam K; Meyer MM; Dotu I; Chuang JH; Clote P PLoS One; 2012; 7(10):e45160. PubMed ID: 23091593 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous folding of alternative RNA structures with mutual constraints: an application to next-generation sequencing-based RNA structure probing. Zhong C; Zhang S J Comput Biol; 2014 Aug; 21(8):609-21. PubMed ID: 24689688 [TBL] [Abstract][Full Text] [Related]
15. Crumple: a method for complete enumeration of all possible pseudoknot-free RNA secondary structures. Bleckley S; Stone JW; Schroeder SJ PLoS One; 2012; 7(12):e52414. PubMed ID: 23300665 [TBL] [Abstract][Full Text] [Related]
16. Oxfold: kinetic folding of RNA using stochastic context-free grammars and evolutionary information. Anderson JW; Haas PA; Mathieson LA; Volynkin V; Lyngsø R; Tataru P; Hein J Bioinformatics; 2013 Mar; 29(6):704-10. PubMed ID: 23396120 [TBL] [Abstract][Full Text] [Related]
17. A dynamic programming algorithm for RNA structure prediction including pseudoknots. Rivas E; Eddy SR J Mol Biol; 1999 Feb; 285(5):2053-68. PubMed ID: 9925784 [TBL] [Abstract][Full Text] [Related]
18. On the normalization of the minimum free energy of RNAs by sequence length. Trotta E PLoS One; 2014; 9(11):e113380. PubMed ID: 25405875 [TBL] [Abstract][Full Text] [Related]
20. Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data. Wu Y; Shi B; Ding X; Liu T; Hu X; Yip KY; Yang ZR; Mathews DH; Lu ZJ Nucleic Acids Res; 2015 Sep; 43(15):7247-59. PubMed ID: 26170232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]