BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 22287709)

  • 21. Interacting genetic loci cause airway hyperresponsiveness.
    Ackerman KG; Huang H; Grasemann H; Puma C; Singer JB; Hill AE; Lander E; Nadeau JH; Churchill GA; Drazen JM; Beier DR
    Physiol Genomics; 2005 Mar; 21(1):105-11. PubMed ID: 15657107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relationship of chronic mucin secretion to airway disease in normal and CFTR-deficient mice.
    Cressman VL; Hicks EM; Funkhouser WK; Backlund DC; Koller BH
    Am J Respir Cell Mol Biol; 1998 Dec; 19(6):853-66. PubMed ID: 9843919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Instability of the insertional mutation in CftrTgH(neoim)Hgu cystic fibrosis mouse model.
    Charizopoulou N; Jansen S; Dorsch M; Stanke F; Dorin JR; Hedrich HJ; Tümmler B
    BMC Genet; 2004 Apr; 5():6. PubMed ID: 15102331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Eosinophil-derived IFN-gamma induces airway hyperresponsiveness and lung inflammation in the absence of lymphocytes.
    Kanda A; Driss V; Hornez N; Abdallah M; Roumier T; Abboud G; Legrand F; Staumont-Sallé D; Quéant S; Bertout J; Fleury S; Rémy P; Papin JP; Julia V; Capron M; Dombrowicz D
    J Allergy Clin Immunol; 2009 Sep; 124(3):573-82, 582.e1-9. PubMed ID: 19539982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decreased peroxisome proliferator activated receptor alpha is associated with bile duct injury in cystic fibrosis transmembrane conductance regulator-/- mice.
    Pall H; Zaman MM; Andersson C; Freedman SD
    J Pediatr Gastroenterol Nutr; 2006 Mar; 42(3):275-81. PubMed ID: 16540796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cystic fibrosis transmembrane conductance regulator in human muscle: Dysfunction causes abnormal metabolic recovery in exercise.
    Lamhonwah AM; Bear CE; Huan LJ; Kim Chiaw P; Ackerley CA; Tein I
    Ann Neurol; 2010 Jun; 67(6):802-8. PubMed ID: 20517942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lack of cystic fibrosis transmembrane conductance regulator in CD3+ lymphocytes leads to aberrant cytokine secretion and hyperinflammatory adaptive immune responses.
    Mueller C; Braag SA; Keeler A; Hodges C; Drumm M; Flotte TR
    Am J Respir Cell Mol Biol; 2011 Jun; 44(6):922-9. PubMed ID: 20724552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of S100A8 correlates with inflammatory lung disease in congenic mice deficient of the cystic fibrosis transmembrane conductance regulator.
    Tirkos S; Newbigging S; Nguyen V; Keet M; Ackerley C; Kent G; Rozmahel RF
    Respir Res; 2006 Mar; 7(1):51. PubMed ID: 16571124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CD8 T cells are essential in the development of respiratory syncytial virus-induced lung eosinophilia and airway hyperresponsiveness.
    Schwarze J; Cieslewicz G; Joetham A; Ikemura T; Hamelmann E; Gelfand EW
    J Immunol; 1999 Apr; 162(7):4207-11. PubMed ID: 10201948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regional oral tolerance in transgenic 2C mice.
    Margenthaler JA; Flye MW
    Surgery; 2005 Aug; 138(2):141-9. PubMed ID: 16153420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sendai virus-mediated CFTR gene transfer to the airway epithelium.
    Ferrari S; Griesenbach U; Iida A; Farley R; Wright AM; Zhu J; Munkonge FM; Smith SN; You J; Ban H; Inoue M; Chan M; Singh C; Verdon B; Argent BE; Wainwright B; Jeffery PK; Geddes DM; Porteous DJ; Hyde SC; Gray MA; Hasegawa M; Alton EW
    Gene Ther; 2007 Oct; 14(19):1371-9. PubMed ID: 17597790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A T(h)17-polarized cell population that has infiltrated the lung requires cells that convert to IFN-{gamma} production in order to induce airway hyperresponsiveness.
    Ashino S; Wakita D; Shiohama Y; Iwakura Y; Chamoto K; Ohkuri T; Kitamura H; Nishimura T
    Int Immunol; 2010 Jun; 22(6):503-13. PubMed ID: 20501609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Submucosal gland distribution in the mouse has a genetic determination localized on chromosome 9.
    Innes BA; Dorin JR
    Mamm Genome; 2001 Feb; 12(2):124-8. PubMed ID: 11210181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transfer of the enhancing effect of respiratory syncytial virus infection on subsequent allergic airway sensitization by T lymphocytes.
    Schwarze J; Mäkelä M; Cieslewicz G; Dakhama A; Lahn M; Ikemura T; Joetham A; Gelfand EW
    J Immunol; 1999 Nov; 163(10):5729-34. PubMed ID: 10553105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CFTR and its key role in in vivo resting and luminal acid-induced duodenal HCO3- secretion.
    Singh AK; Sjöblom M; Zheng W; Krabbenhöft A; Riederer B; Rausch B; Manns MP; Soleimani M; Seidler U
    Acta Physiol (Oxf); 2008 Aug; 193(4):357-65. PubMed ID: 18363901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aspergillus fumigatus generates an enhanced Th2-biased immune response in mice with defective cystic fibrosis transmembrane conductance regulator.
    Allard JB; Poynter ME; Marr KA; Cohn L; Rincon M; Whittaker LA
    J Immunol; 2006 Oct; 177(8):5186-94. PubMed ID: 17015704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MicroRNA profiling of cystic fibrosis intestinal disease in mice.
    Bazett M; Paun A; Haston CK
    Mol Genet Metab; 2011 May; 103(1):38-43. PubMed ID: 21333573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Altered intestinal bile salt biotransformation in a cystic fibrosis (Cftr-/-) mouse model with hepato-biliary pathology.
    Bodewes FA; van der Wulp MY; Beharry S; Doktorova M; Havinga R; Boverhof R; James Phillips M; Durie PR; Verkade HJ
    J Cyst Fibros; 2015 Jul; 14(4):440-6. PubMed ID: 25633479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptional adaptation to cystic fibrosis transmembrane conductance regulator deficiency.
    Xu Y; Clark JC; Aronow BJ; Dey CR; Liu C; Wooldridge JL; Whitsett JA
    J Biol Chem; 2003 Feb; 278(9):7674-82. PubMed ID: 12482874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia.
    Koehler DR; Sajjan U; Chow YH; Martin B; Kent G; Tanswell AK; McKerlie C; Forstner JF; Hu J
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15364-9. PubMed ID: 14673110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.