These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 22288646)
1. Novel use of poly(3,4-ethylenedioxythiophene) nanoparticles for fluorescent nucleic acid detection. Zhang Y; Liu S; Wang L; Luo Y; Tian J; Asiri AM; Al-Youbi AO; Sun X ACS Comb Sci; 2012 Mar; 14(3):191-6. PubMed ID: 22288646 [TBL] [Abstract][Full Text] [Related]
2. Coordination polymer nanobelts for nucleic acid detection. Luo Y; Liao F; Lu W; Chang G; Sun X Nanotechnology; 2011 May; 22(19):195502. PubMed ID: 21430328 [TBL] [Abstract][Full Text] [Related]
3. Conjugation polymer nanobelts: a novel fluorescent sensing platform for nucleic acid detection. Wang L; Zhang Y; Tian J; Li H; Sun X Nucleic Acids Res; 2011 Mar; 39(6):e37. PubMed ID: 21183465 [TBL] [Abstract][Full Text] [Related]
4. Polypyrrole-poly(3,4-ethylenedioxythiophene)-Ag (PPy-PEDOT-Ag) nanocomposite films for label-free electrochemical DNA sensing. Radhakrishnan S; Sumathi C; Umar A; Jae Kim S; Wilson J; Dharuman V Biosens Bioelectron; 2013 Sep; 47():133-40. PubMed ID: 23578969 [TBL] [Abstract][Full Text] [Related]
5. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Li H; Zhang Y; Wang L; Tian J; Sun X Chem Commun (Camb); 2011 Jan; 47(3):961-3. PubMed ID: 21079843 [TBL] [Abstract][Full Text] [Related]
6. A general synthesis for PEDOT-coated nonconductive materials and PEDOT hollow particles by aqueous chemical polymerization. Luo SC; Yu HH; Wan AC; Han Y; Ying JY Small; 2008 Nov; 4(11):2051-8. PubMed ID: 18949792 [TBL] [Abstract][Full Text] [Related]
7. Application of 3,4,9,10-perylenetetracarboxylic diimide microfibers as a fluorescent sensing platform for biomolecular detection. Li H; Sun X Anal Chim Acta; 2011 Sep; 702(1):109-13. PubMed ID: 21819867 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch. Li H; Luo Y; Sun X Biosens Bioelectron; 2011 Sep; 27(1):167-71. PubMed ID: 21783356 [TBL] [Abstract][Full Text] [Related]
9. Pd nanowires as new biosensing materials for magnified fluorescent detection of nucleic acid. Zhang L; Guo S; Dong S; Wang E Anal Chem; 2012 Apr; 84(8):3568-73. PubMed ID: 22420689 [TBL] [Abstract][Full Text] [Related]
10. Carbon nanocapsules as an effective sensing platform for fluorescence-enhanced nucleic acid detection. Chang G; Hu J; Lu W; Qin X; Asiri AM; Al-Youbi AO; Sun X J Nanosci Nanotechnol; 2012 May; 12(5):3775-80. PubMed ID: 22852306 [TBL] [Abstract][Full Text] [Related]
11. Mesoporous carbon microparticles as a novel fluorescent sensing platform for thrombin detection. Zhang Y; Liu S; Sun X Biosens Bioelectron; 2011 May; 26(9):3876-80. PubMed ID: 21440431 [TBL] [Abstract][Full Text] [Related]
12. Nano-C(60) : a novel, effective, fluorescent sensing platform for biomolecular detection. Li H; Zhang Y; Luo Y; Sun X Small; 2011 Jun; 7(11):1562-8. PubMed ID: 21520502 [TBL] [Abstract][Full Text] [Related]
13. Poly(3,4-ethylenedioxythiophene) coated chitosan modified disposable electrodes for DNA and DNA-drug interaction sensing. Kuralay F; Demirci S; Kiristi M; Oksuz L; Oksuz AU Colloids Surf B Biointerfaces; 2014 Nov; 123():825-30. PubMed ID: 25454660 [TBL] [Abstract][Full Text] [Related]
14. Coordination polymer nanobelts as an effective sensing platform for fluorescence-enhanced nucleic acid detection. Li H; Wang L; Zhai J; Zhang Y; Tian J; Sun X Macromol Rapid Commun; 2011 Jun; 32(12):899-904. PubMed ID: 21491538 [TBL] [Abstract][Full Text] [Related]
15. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. Liu R; Duay J; Lee SB ACS Nano; 2010 Jul; 4(7):4299-307. PubMed ID: 20590128 [TBL] [Abstract][Full Text] [Related]
16. Trinity DNA detection platform by ultrasmooth and functionalized PEDOT biointerfaces. Luo SC; Xie H; Chen N; Yu HH ACS Appl Mater Interfaces; 2009 Jul; 1(7):1414-9. PubMed ID: 20355943 [TBL] [Abstract][Full Text] [Related]
17. Electrostatic-assembly-driven formation of supramolecular rhombus microparticles and their application for fluorescent nucleic acid detection. Li H; Zhai J; Sun X PLoS One; 2011 Apr; 6(4):e18958. PubMed ID: 21526152 [TBL] [Abstract][Full Text] [Related]
18. Novel label-free DNA sensors based on poly(3,4-ethylenedioxythiophene). Krishnamoorthy K; Gokhale RS; Contractor AQ; Kumar A Chem Commun (Camb); 2004 Apr; (7):820-1. PubMed ID: 15045080 [TBL] [Abstract][Full Text] [Related]
19. A robust and homogeneous porous poly(3,4-ethylenedioxythiophene)/graphene thin film for high-efficiency laser desorption/ionization analysis of estrogens in biological samples. Huang S; Ye N; Chen G; Ou R; Huang Y; Zhu F; Shen J; Ouyang G Talanta; 2019 Apr; 195():290-297. PubMed ID: 30625545 [TBL] [Abstract][Full Text] [Related]
20. A novel nucleic acid fluorescent sensing platform based on nanostructured films of intrinsically conducting polymers. Pedro GC; Gorza FDS; da Silva RJ; do Nascimento KTO; Medina-Llamas JC; Chávez-Guajardo AE; Alcaraz-Espinoza JJ; de Melo CP Anal Chim Acta; 2019 Jan; 1047():214-224. PubMed ID: 30567653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]