These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22288891)

  • 1. On the interrelationship of permeability and structural parameters of vertebral trabecular bone: a parametric computational study.
    Widmer RP; Ferguson SJ
    Comput Methods Biomech Biomed Engin; 2013; 16(8):908-22. PubMed ID: 22288891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison and verification of computational methods to determine the permeability of vertebral trabecular bone.
    Widmer RP; Ferguson SJ
    Proc Inst Mech Eng H; 2013 Jun; 227(6):617-28. PubMed ID: 23636744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeability study of vertebral cancellous bone using micro-computational fluid dynamics.
    Teo JC; Teoh SH
    Comput Methods Biomech Biomed Engin; 2012; 15(4):417-23. PubMed ID: 21229410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic Permeability of Trabecular Bone and its Relationship to Fabric and Architecture: A Computational Study.
    Kreipke TC; Niebur GL
    Ann Biomed Eng; 2017 Jun; 45(6):1543-1554. PubMed ID: 28155122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport properties.
    Kohles SS; Roberts JB
    J Biomech Eng; 2002 Oct; 124(5):521-6. PubMed ID: 12405594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permeability studies of artificial and natural cancellous bone structures.
    Syahrom A; Abdul Kadir MR; Abdullah J; Öchsner A
    Med Eng Phys; 2013 Jun; 35(6):792-9. PubMed ID: 22959618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of bone permeability considering the morphology of lacuno-canalicular porosity.
    Kameo Y; Adachi T; Sato N; Hojo M
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):240-8. PubMed ID: 20142108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration.
    Baroud G; Falk R; Crookshank M; Sponagel S; Steffen T
    J Biomech; 2004 Feb; 37(2):189-96. PubMed ID: 14706321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of intertrabecular permeability on flow direction and anatomic site.
    Nauman EA; Fong KE; Keaveny TM
    Ann Biomed Eng; 1999; 27(4):517-24. PubMed ID: 10468236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of continuum and micro-structural properties of human vertebral cancellous bone using combined cellular solid models.
    Sander EA; Shimko DA; Dee KC; Nauman EA
    Biomech Model Mechanobiol; 2003 Nov; 2(2):97-107. PubMed ID: 14586811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of anisotropic permeability in trabecular bone based on microCT imaging and pore-scale fluid dynamics simulations.
    Daish C; Blanchard R; Gulati K; Losic D; Findlay D; Harvie DJE; Pivonka P
    Bone Rep; 2017 Jun; 6():129-139. PubMed ID: 28462361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological models of trabecular bone suitable for high-porosity regions and vertebrae.
    Rammohan AV; Tan VB
    Comput Methods Biomech Biomed Engin; 2016 Oct; 19(13):1418-22. PubMed ID: 26892403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic open cell foams versus a healthy human vertebra: Anisotropy, fluid flow and μ-CT structural studies.
    Gómez González S; Valera Jiménez JF; Cabestany Bastida G; Vlad MD; López López J; Fernández Aguado E
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110404. PubMed ID: 31923939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-scale analysis of Newtonian flow in the explicit geometry of vertebral trabecular bones using lattice Boltzmann simulation.
    Zeiser T; Bashoor-Zadeh M; Darabi A; Baroud G
    Proc Inst Mech Eng H; 2008 Feb; 222(2):185-94. PubMed ID: 18441754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved trabecular bone model based on Voronoi tessellation.
    Zhou Y; Isaksson P; Persson C
    J Mech Behav Biomed Mater; 2023 Dec; 148():106172. PubMed ID: 37852087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.
    Widmer RP; Ferguson SJ
    J Biomech Eng; 2011 May; 133(5):051007. PubMed ID: 21599098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory.
    Abdalrahman T; Scheiner S; Hellmich C
    J Theor Biol; 2015 Jan; 365():433-44. PubMed ID: 25452137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1320-8. PubMed ID: 20529708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid-structure interaction (FSI) modeling of bone marrow through trabecular bone structure under compression.
    Rabiatul AAR; Fatihhi SJ; Md Saad AP; Zakaria Z; Harun MN; Kadir MRA; Öchsner A; Zaman TK; Syahrom A
    Biomech Model Mechanobiol; 2021 Jun; 20(3):957-968. PubMed ID: 33547975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.