BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 22289414)

  • 1. The effect of distinct mental strategies on classification performance for brain-computer interfaces.
    Friedrich EV; Scherer R; Neuper C
    Int J Psychophysiol; 2012 Apr; 84(1):86-94. PubMed ID: 22289414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of auditory distraction on user performance in a brain-computer interface driven by different mental tasks.
    Friedrich EV; Scherer R; Sonnleitner K; Neuper C
    Clin Neurophysiol; 2011 Oct; 122(10):2003-9. PubMed ID: 21511526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of event-related (de-) synchronization during brain-computer interface-relevant mental tasks.
    Friedrich EV; Scherer R; Neuper C
    Clin Neurophysiol; 2013 Jan; 124(1):61-9. PubMed ID: 22749465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term evaluation of a 4-class imagery-based brain-computer interface.
    Friedrich EV; Scherer R; Neuper C
    Clin Neurophysiol; 2013 May; 124(5):916-27. PubMed ID: 23290926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of EEG modifications due to motor imagery for brain-computer interfaces.
    Cincotti F; Mattia D; Babiloni C; Carducci F; Salinari S; Bianchi L; Marciani MG; Babiloni F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):131-3. PubMed ID: 12899254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually.
    Friedrich EV; Neuper C; Scherer R
    PLoS One; 2013; 8(9):e76214. PubMed ID: 24086710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory and spatial navigation imagery in Brain-Computer Interface using optimized wavelets.
    Cabrera AF; Dremstrup K
    J Neurosci Methods; 2008 Sep; 174(1):135-46. PubMed ID: 18656500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive tasks for driving a brain-computer interfacing system: a pilot study.
    Curran E; Sykacek P; Stokes M; Roberts SJ; Penny W; Johnsrude I; Owen AM
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):48-54. PubMed ID: 15068187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
    Iturrate I; Montesano L; Minguez J
    J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis.
    Kamousi B; Liu Z; He B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI.
    Pfurtscheller G; Solis-Escalante T; Ortner R; Linortner P; Müller-Putz GR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):409-14. PubMed ID: 20144923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring virtual environments with an EEG-based BCI through motor imagery.
    Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G
    Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG.
    Neuper C; Scherer R; Reiner M; Pfurtscheller G
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):668-77. PubMed ID: 16236487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Training protocol evaluation of a brain-computer interface: mental tasks proposal].
    Ron-Angevin R; Díaz-Estrella A
    Rev Neurol; 2008 Aug 16-31; 47(4):197-203. PubMed ID: 18671209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of induced and evoked changes in EEG during selective attention to verbal stimuli.
    Horki P; Bauernfeind G; Schippinger W; Pichler G; Müller-Putz GR
    J Neurosci Methods; 2016 Sep; 270():165-176. PubMed ID: 27329006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced performance by a hybrid NIRS-EEG brain computer interface.
    Fazli S; Mehnert J; Steinbrink J; Curio G; Villringer A; Müller KR; Blankertz B
    Neuroimage; 2012 Jan; 59(1):519-29. PubMed ID: 21840399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.