These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 22289414)

  • 21. A motor imagery-based online interactive brain-controlled switch: paradigm development and preliminary test.
    Qian K; Nikolov P; Huang D; Fei DY; Chen X; Bai O
    Clin Neurophysiol; 2010 Aug; 121(8):1304-13. PubMed ID: 20347386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional MRI-based identification of brain areas involved in motor imagery for implantable brain-computer interfaces.
    Hermes D; Vansteensel MJ; Albers AM; Bleichner MG; Benedictus MR; Mendez Orellana C; Aarnoutse EJ; Ramsey NF
    J Neural Eng; 2011 Apr; 8(2):025007. PubMed ID: 21436535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single trial classification of motor imagination using 6 dry EEG electrodes.
    Popescu F; Fazli S; Badower Y; Blankertz B; Müller KR
    PLoS One; 2007 Jul; 2(7):e637. PubMed ID: 17653264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Similarities between explicit and implicit motor imagery in mental rotation of hands: an EEG study.
    Osuagwu BA; Vuckovic A
    Neuropsychologia; 2014 Dec; 65():197-210. PubMed ID: 25446966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification effects of real and imaginary movement selective attention tasks on a P300-based brain-computer interface.
    Salvaris M; Sepulveda F
    J Neural Eng; 2010 Oct; 7(5):056004. PubMed ID: 20811088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive tracking of discriminative frequency components in electroencephalograms for a robust brain-computer interface.
    Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK
    J Neural Eng; 2011 Jun; 8(3):036007. PubMed ID: 21478575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior.
    Bai O; Lin P; Vorbach S; Floeter MK; Hattori N; Hallett M
    J Neural Eng; 2008 Mar; 5(1):24-35. PubMed ID: 18310808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EEG-based motor imagery analysis using weighted wavelet transform features.
    Hsu WY; Sun YN
    J Neurosci Methods; 2009 Jan; 176(2):310-8. PubMed ID: 18848844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):258-65. PubMed ID: 15218939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient resting-state EEG network facilitates motor imagery performance.
    Zhang R; Yao D; Valdés-Sosa PA; Li F; Li P; Zhang T; Ma T; Li Y; Xu P
    J Neural Eng; 2015 Dec; 12(6):066024. PubMed ID: 26529439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EEG-based synchronized brain-computer interfaces: a model for optimizing the number of mental tasks.
    Kronegg J; Chanel G; Voloshynovskiy S; Pun T
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):50-8. PubMed ID: 17436876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Motor imagery and EEG-based control of spelling devices and neuroprostheses.
    Neuper C; Müller-Putz GR; Scherer R; Pfurtscheller G
    Prog Brain Res; 2006; 159():393-409. PubMed ID: 17071244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain-computer interface: changes in performance using virtual reality techniques.
    Ron-Angevin R; Díaz-Estrella A
    Neurosci Lett; 2009 Jan; 449(2):123-7. PubMed ID: 19000739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards a system-paced near-infrared spectroscopy brain-computer interface: differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state.
    Power SD; Kushki A; Chau T
    J Neural Eng; 2011 Dec; 8(6):066004. PubMed ID: 21975364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery.
    Toppi J; Risetti M; Quitadamo LR; Petti M; Bianchi L; Salinari S; Babiloni F; Cincotti F; Mattia D; Astolfi L
    J Neural Eng; 2014 Jun; 11(3):035010. PubMed ID: 24835634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data.
    Saa JF; Çetin M
    J Neural Eng; 2012 Apr; 9(2):026020. PubMed ID: 22414728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.
    Emami Z; Chau T
    Clin Neurophysiol; 2018 Jun; 129(6):1268-1275. PubMed ID: 29677690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.