These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22289426)

  • 21. Prior information and oculomotor initiation: the effect of cues in gaps.
    Knox PC
    Exp Brain Res; 2009 Jan; 192(1):75-85. PubMed ID: 18762927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced Cognitive Control Demands after Practice of Saccade Tasks in a Trial Type Probability Manipulation.
    Pierce JE; McDowell JE
    J Cogn Neurosci; 2017 Feb; 29(2):368-381. PubMed ID: 27676615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related FMRI.
    DeSouza JF; Menon RS; Everling S
    J Neurophysiol; 2003 Feb; 89(2):1016-23. PubMed ID: 12574477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human express saccade makers are impaired at suppressing visually evoked saccades.
    Biscaldi M; Fischer B; Stuhr V
    J Neurophysiol; 1996 Jul; 76(1):199-214. PubMed ID: 8836219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An fMRI Investigation of Preparatory Set in the Human Cerebral Cortex and Superior Colliculus for Pro- and Anti-Saccades.
    Furlan M; Smith AT; Walker R
    PLoS One; 2016; 11(7):e0158337. PubMed ID: 27391390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects.
    Kimmig H; Greenlee MW; Gondan M; Schira M; Kassubek J; Mergner T
    Exp Brain Res; 2001 Nov; 141(2):184-94. PubMed ID: 11713630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder.
    Munoz DP; Armstrong IT; Hampton KA; Moore KD
    J Neurophysiol; 2003 Jul; 90(1):503-14. PubMed ID: 12672781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anti-saccade error rates as a measure of attentional bias in cocaine dependent subjects.
    Dias NR; Schmitz JM; Rathnayaka N; Red SD; Sereno AB; Moeller FG; Lane SD
    Behav Brain Res; 2015 Oct; 292():493-9. PubMed ID: 26164486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oscillatory alpha-band suppression mechanisms during the rapid attentional shifts required to perform an anti-saccade task.
    Belyusar D; Snyder AC; Frey HP; Harwood MR; Wallman J; Foxe JJ
    Neuroimage; 2013 Jan; 65():395-407. PubMed ID: 23041338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuromuscular recruitment related to stimulus presentation and task instruction during the anti-saccade task.
    Chapman BB; Corneil BD
    Eur J Neurosci; 2011 Jan; 33(2):349-60. PubMed ID: 21091804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using temporally aligned event-related potentials for the investigation of attention shifts prior to and during saccades.
    Huber-Huber C; Ditye T; Marchante Fernández M; Ansorge U
    Neuropsychologia; 2016 Nov; 92():129-141. PubMed ID: 27059211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of stimulus-induced saccades on manual response times in healthy elderly and in patients with right-parietal lesions.
    Verleger R; Heide W; Kömpf D
    Exp Brain Res; 2002 May; 144(1):17-29. PubMed ID: 11976756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental improvements in voluntary control of behavior: effect of preparation in the fronto-parietal network?
    Alahyane N; Brien DC; Coe BC; Stroman PW; Munoz DP
    Neuroimage; 2014 Sep; 98():103-17. PubMed ID: 24642280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cortical activity preceding vertical saccades: a MEG study.
    Tzelepi A; Laskaris N; Amditis A; Kapoula Z
    Brain Res; 2010 Mar; 1321():105-16. PubMed ID: 20079341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential threat attracts attention and interferes with voluntary saccades.
    Schmidt LJ; Belopolsky AV; Theeuwes J
    Emotion; 2015 Jun; 15(3):329-38. PubMed ID: 25527964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Saccade Latency and Metrics in the Interleaved Pro- and Anti-Saccade Task in Open Skill Sports Athletes.
    Chen JT; Kan NW; Barquero C; Teo MMJ; Wang CA
    Scand J Med Sci Sports; 2024 Aug; 34(8):e14713. PubMed ID: 39155402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The neural basis of improved cognitive performance by threat of shock.
    Torrisi S; Robinson O; O'Connell K; Davis A; Balderston N; Ernst M; Grillon C
    Soc Cogn Affect Neurosci; 2016 Nov; 11(11):1677-1686. PubMed ID: 27369069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-bias modulates saccadic control.
    Yankouskaya A; Palmer D; Stolte M; Sui J; Humphreys GW
    Q J Exp Psychol (Hove); 2017 Dec; 70(12):2577-2585. PubMed ID: 27739335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatio-temporal brain dynamics underlying saccade execution, suppression, and error-related feedback.
    Herdman AT; Ryan JD
    J Cogn Neurosci; 2007 Mar; 19(3):420-32. PubMed ID: 17335391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disruption of pupil size modulation correlates with voluntary motor preparation deficits in Parkinson's disease.
    Wang CA; McInnis H; Brien DC; Pari G; Munoz DP
    Neuropsychologia; 2016 Jan; 80():176-184. PubMed ID: 26631540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.