BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 22289461)

  • 1. Time-resolved luminescence resonance energy transfer imaging of protein-protein interactions in living cells.
    Rajapakse HE; Miller LW
    Methods Enzymol; 2012; 505():329-45. PubMed ID: 22289461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system.
    Hanaoka K; Kikuchi K; Kobayashi S; Nagano T
    J Am Chem Soc; 2007 Nov; 129(44):13502-9. PubMed ID: 17927176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing lanthanide luminescence by use of the RETEL effect.
    Leif RC; Vallarino LM; Becker MC; Yang S
    Cytometry A; 2006 Aug; 69(8):940-6. PubMed ID: 16969811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved luminescence resonance energy transfer imaging of protein-protein interactions in living cells.
    Rajapakse HE; Gahlaut N; Mohandessi S; Yu D; Turner JR; Miller LW
    Proc Natl Acad Sci U S A; 2010 Aug; 107(31):13582-7. PubMed ID: 20643966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving lanthanide-based resonance energy transfer detection by increasing donor-acceptor distances.
    Vogel KW; Vedvik KL
    J Biomol Screen; 2006 Jun; 11(4):439-43. PubMed ID: 16751339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic imaging of homo-FRET in live cells by fluorescence anisotropy microscopy.
    Ghosh S; Saha S; Goswami D; Bilgrami S; Mayor S
    Methods Enzymol; 2012; 505():291-327. PubMed ID: 22289460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminescence resonance energy transfer sensors based on the assemblies of oppositely charged lanthanide/gold nanoparticles in aqueous solution.
    Gu JQ; Sun LD; Yan ZG; Yan CH
    Chem Asian J; 2008 Oct; 3(10):1857-64. PubMed ID: 18726878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved fluorescence resonance energy transfer kinase assays using physiological protein substrates: applications of terbium-fluorescein and terbium-green fluorescent protein fluorescence resonance energy transfer pairs.
    Riddle SM; Vedvik KL; Hanson GT; Vogel KW
    Anal Biochem; 2006 Sep; 356(1):108-16. PubMed ID: 16797477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique.
    Lee JD; Chang YF; Kao FJ; Kao LS; Lin CC; Lu AC; Shyu BC; Chiou SH; Yang DM
    Microsc Res Tech; 2008 Jan; 71(1):26-34. PubMed ID: 17886343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles.
    Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK
    Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lanthanide-binding tags as luminescent probes for studying protein interactions.
    Sculimbrene BR; Imperiali B
    J Am Chem Soc; 2006 Jun; 128(22):7346-52. PubMed ID: 16734490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell nanoarchitectures: a strategy to improve the efficiency of luminescence resonance energy transfer.
    Song C; Ye Z; Wang G; Yuan J; Guan Y
    ACS Nano; 2010 Sep; 4(9):5389-97. PubMed ID: 20681528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upconverting phosphors in a dual-parameter LRET-based hybridization assay.
    Rantanen T; Järvenpää ML; Vuojola J; Arppe R; Kuningas K; Soukka T
    Analyst; 2009 Aug; 134(8):1713-6. PubMed ID: 20448942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Lanthanide-Containing Polyoxometalates to Sensitise the Emission of Fluorescent Labelled Serum Albumin.
    Holmes-Smith AS; Crisp J; Hussain F; Patzke GR; Hungerford G
    Chemphyschem; 2016 Feb; 17(3):418-24. PubMed ID: 26642428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luminescence resonance energy transfer analysis of RNA polymerase complexes.
    Heyduk T
    Methods; 2001 Sep; 25(1):44-53. PubMed ID: 11558996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular energy transfer from Tb3+ to Eu3+ in aqueous aggregates and on the surface of human cells.
    Lee M; Tremblay MS; Jockusch S; Turro NJ; Sames D
    Org Lett; 2011 Jun; 13(11):2802-5. PubMed ID: 21563789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single lanthanide-doped oxide nanoparticles as donors in fluorescence resonance energy transfer experiments.
    Casanova D; Giaume D; Gacoin T; Boilot JP; Alexandrou A
    J Phys Chem B; 2006 Oct; 110(39):19264-70. PubMed ID: 17004778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy.
    Charbonnière LJ; Hildebrandt N; Ziessel RF; Löhmannsröben HG
    J Am Chem Soc; 2006 Oct; 128(39):12800-9. PubMed ID: 17002375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the performance of time-gated live-cell microscopy with lanthanide probes.
    Rajendran M; Miller LW
    Biophys J; 2015 Jul; 109(2):240-8. PubMed ID: 26200860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.