BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 22289639)

  • 21. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering.
    Januariyasa IK; Ana ID; Yusuf Y
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110347. PubMed ID: 31761152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of biocomposite scaffolds made with modified hydroxyapatite inclusion of chitosan-grafted-poly(methyl methacrylate) for bone tissue engineering.
    Tithito T; Suntornsaratoon P; Charoenphandhu N; Thongbunchoo J; Krishnamra N; Tang IM; Pon-On W
    Biomed Mater; 2019 Feb; 14(2):025013. PubMed ID: 30690438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydroxyapatite-intertwined hybrid nanofibres for the mineralization of osteoblasts.
    Sujana A; Venugopal JR; Velmurugan B; Góra A; Salla M; Ramakrishna S
    J Tissue Eng Regen Med; 2017 Jun; 11(6):1853-1864. PubMed ID: 26354141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration.
    Jeong SI; Ko EK; Yum J; Jung CH; Lee YM; Shin H
    Macromol Biosci; 2008 Apr; 8(4):328-38. PubMed ID: 18163376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds.
    Kim HW; Kim HE; Salih V
    Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.
    Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H
    Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration.
    Venugopal JR; Giri Dev VR; Senthilram T; Sathiskumar D; Gupta D; Ramakrishna S
    Cell Biol Int; 2011 Jan; 35(1):73-80. PubMed ID: 20923413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications.
    Ramier J; Bouderlique T; Stoilova O; Manolova N; Rashkov I; Langlois V; Renard E; Albanese P; Grande D
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():161-9. PubMed ID: 24656364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation.
    Zhou G; Liu S; Ma Y; Xu W; Meng W; Lin X; Wang W; Wang S; Zhang J
    Int J Nanomedicine; 2017; 12():7577-7588. PubMed ID: 29075116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers.
    Venugopal J; Low S; Choon AT; Sampath Kumar TS; Ramakrishna S
    J Mater Sci Mater Med; 2008 May; 19(5):2039-46. PubMed ID: 17957448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanofibrous Scaffolds Containing Hydroxyapatite and Microfluidic-Prepared Polyamidoamin/BMP-2 Plasmid Dendriplexes for Bone Tissue Engineering Applications.
    Doosti-Telgerd M; Mahdavi FS; Moradikhah F; Porgham Daryasari M; Bayrami Atashgah R; Dolatyar B; Akbari Javar H; Seyedjafari E; Shabani I; Arefian E; Najafi F; Abdi Y; Amini M
    Int J Nanomedicine; 2020; 15():2633-2646. PubMed ID: 32368045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators.
    Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV
    Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hardystonite improves biocompatibility and strength of electrospun polycaprolactone nanofibers over hydroxyapatite: a comparative study.
    Jaiswal AK; Chhabra H; Kadam SS; Londhe K; Soni VP; Bellare JR
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2926-36. PubMed ID: 23623116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel nano-hydroxyapatite - PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties.
    G R; S B; Venkatesan B; Vellaichamy E
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():221-228. PubMed ID: 28415457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering.
    Li M; Liu W; Sun J; Xianyu Y; Wang J; Zhang W; Zheng W; Huang D; Di S; Long YZ; Jiang X
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5921-6. PubMed ID: 23790233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite.
    Jaiswal AK; Chhabra H; Soni VP; Bellare JR
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2376-85. PubMed ID: 23498272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells.
    Novotna K; Zajdlova M; Suchy T; Hadraba D; Lopot F; Zaloudkova M; Douglas TE; Munzarova M; Juklickova M; Stranska D; Kubies D; Schaubroeck D; Wille S; Balcaen L; Jarosova M; Kozak H; Kromka A; Svindrych Z; Lisa V; Balik K; Bacakova L
    J Biomed Mater Res A; 2014 Nov; 102(11):3918-30. PubMed ID: 24375970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymethyl methacrylate (PMMA) grafted collagen scaffold reinforced by PdO-TiO
    Vedhanayagam M; Anandasadagopan S; Nair BU; Sreeram KJ
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110378. PubMed ID: 31924005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.