These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 22289775)
1. Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Chang PK; Scharfenstein LL; Ehrlich KC; Wei Q; Bhatnagar D; Ingber BF Fungal Biol; 2012 Feb; 116(2):298-307. PubMed ID: 22289775 [TBL] [Abstract][Full Text] [Related]
2. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Chang PK; Scharfenstein LL; Li P; Ehrlich KC Fungal Genet Biol; 2013; 58-59():71-9. PubMed ID: 23994319 [TBL] [Abstract][Full Text] [Related]
3. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Kale SP; Milde L; Trapp MK; Frisvad JC; Keller NP; Bok JW Fungal Genet Biol; 2008 Oct; 45(10):1422-9. PubMed ID: 18667168 [TBL] [Abstract][Full Text] [Related]
4. Molasses supplementation promotes conidiation but suppresses aflatoxin production by small sclerotial Aspergillus flavus. Chang PK; Hua SS Lett Appl Microbiol; 2007 Feb; 44(2):131-7. PubMed ID: 17257250 [TBL] [Abstract][Full Text] [Related]
5. rtfA, a putative RNA-Pol II transcription elongation factor gene, is necessary for normal morphological and chemical development in Aspergillus flavus. Lohmar JM; Harris-Coward PY; Cary JW; Dhingra S; Calvo AM Appl Microbiol Biotechnol; 2016 Jun; 100(11):5029-41. PubMed ID: 27020290 [TBL] [Abstract][Full Text] [Related]
6. Genes differentially expressed by Aspergillus flavus strains after loss of aflatoxin production by serial transfers. Chang PK; Wilkinson JR; Horn BW; Yu J; Bhatnagar D; Cleveland TE Appl Microbiol Biotechnol; 2007 Dec; 77(4):917-25. PubMed ID: 17955191 [TBL] [Abstract][Full Text] [Related]
7. Insight into the global regulation of laeA in Aspergillus flavus based on proteomic profiling. Lv Y; Lv A; Zhai H; Zhang S; Li L; Cai J; Hu Y Int J Food Microbiol; 2018 Nov; 284():11-21. PubMed ID: 29990635 [TBL] [Abstract][Full Text] [Related]
8. New Insights of Transcriptional Regulator AflR in Aspergillus flavus Physiology. Wang P; Xu J; Chang PK; Liu Z; Kong Q Microbiol Spectr; 2022 Feb; 10(1):e0079121. PubMed ID: 35080432 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the velvet regulators in Aspergillus flavus. Eom TJ; Moon H; Yu JH; Park HS J Microbiol; 2018 Dec; 56(12):893-901. PubMed ID: 30361976 [TBL] [Abstract][Full Text] [Related]
10. Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis. Chang PK; Scharfenstein LL; Mack B; Ehrlich KC Appl Environ Microbiol; 2012 Nov; 78(21):7557-63. PubMed ID: 22904054 [TBL] [Abstract][Full Text] [Related]
11. NsdC and NsdD affect Aspergillus flavus morphogenesis and aflatoxin production. Cary JW; Harris-Coward PY; Ehrlich KC; Mack BM; Kale SP; Larey C; Calvo AM Eukaryot Cell; 2012 Sep; 11(9):1104-11. PubMed ID: 22798394 [TBL] [Abstract][Full Text] [Related]
12. The Aspergillus flavus Homeobox Gene, hbx1, is Required for Development and Aflatoxin Production. Cary JW; Harris-Coward P; Scharfenstein L; Mack BM; Chang PK; Wei Q; Lebar M; Carter-Wientjes C; Majumdar R; Mitra C; Banerjee S; Chanda A Toxins (Basel); 2017 Oct; 9(10):. PubMed ID: 29023405 [TBL] [Abstract][Full Text] [Related]
13. Deep sequencing analysis of transcriptomes in Aspergillus flavus in response to resveratrol. Wang H; Lei Y; Yan L; Cheng K; Dai X; Wan L; Guo W; Cheng L; Liao B BMC Microbiol; 2015 Sep; 15():182. PubMed ID: 26420172 [TBL] [Abstract][Full Text] [Related]
14. Analysis of genes early expressed during Aspergillus flavus colonisation of hazelnut. Gallo A; Epifani F; Bonsegna S; Pascale M; Santino A; Perrone G Int J Food Microbiol; 2010 Jan; 137(1):111-5. PubMed ID: 19948368 [TBL] [Abstract][Full Text] [Related]
15. Use of UHPLC high-resolution Orbitrap mass spectrometry to investigate the genes involved in the production of secondary metabolites in Aspergillus flavus. Arroyo-Manzanares N; Di Mavungu JD; Uka V; Malysheva SV; Cary JW; Ehrlich KC; Vanhaecke L; Bhatnagar D; De Saeger S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(10):1656-73. PubMed ID: 26278397 [TBL] [Abstract][Full Text] [Related]
17. The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species. Son YE; Cho HJ; Chen W; Son SH; Lee MK; Yu JH; Park HS Curr Genet; 2020 Jun; 66(3):621-633. PubMed ID: 32060628 [TBL] [Abstract][Full Text] [Related]
18. Lysine acetylation contributes to development, aflatoxin biosynthesis and pathogenicity in Aspergillus flavus. Yang G; Yue Y; Ren S; Yang M; Zhang Y; Cao X; Wang Y; Zhang J; Ge F; Wang S Environ Microbiol; 2019 Dec; 21(12):4792-4807. PubMed ID: 31608565 [TBL] [Abstract][Full Text] [Related]
19. Elucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis. Kim JH; Yu J; Mahoney N; Chan KL; Molyneux RJ; Varga J; Bhatnagar D; Cleveland TE; Nierman WC; Campbell BC Int J Food Microbiol; 2008 Feb; 122(1-2):49-60. PubMed ID: 18166238 [TBL] [Abstract][Full Text] [Related]
20. Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Cary JW; OBrian GR; Nielsen DM; Nierman W; Harris-Coward P; Yu J; Bhatnagar D; Cleveland TE; Payne GA; Calvo AM Appl Microbiol Biotechnol; 2007 Oct; 76(5):1107-18. PubMed ID: 17646985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]