These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22289865)

  • 1. Phylogenetic insights into the correlates of dioecy in meadow-rues (Thalictrum, Ranunculaceae).
    Soza VL; Brunet J; Liston A; Smith PS; Di Stilio VS
    Mol Phylogenet Evol; 2012 Apr; 63(1):180-92. PubMed ID: 22289865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Timing and consequences of recurrent polyploidy in meadow-rues (thalictrum, ranunculaceae).
    Soza VL; Haworth KL; Di Stilio VS
    Mol Biol Evol; 2013 Aug; 30(8):1940-54. PubMed ID: 23728793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scent matters: differential contribution of scent to insect response in flowers with insect vs. wind pollination traits.
    Wang TN; Clifford MR; Martínez-Gómez J; Johnson JC; Riffell JA; Di Stilio VS
    Ann Bot; 2019 Jan; 123(2):289-301. PubMed ID: 30052759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flower morphology as a predictor of pollination mode in a biotic to abiotic pollination continuum.
    Martínez-Gómez J; Park S; Hartogs SR; Soza VL; Park SJ; Di Stilio VS
    Ann Bot; 2023 Oct; 132(1):61-76. PubMed ID: 37235981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database.
    Renner SS
    Am J Bot; 2014 Oct; 101(10):1588-96. PubMed ID: 25326608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Floral trait evolution associated with shifts between insect and wind pollination in the dioecious genus Leucadendron (Proteaceae).
    Welsford MR; Hobbhahn N; Midgley JJ; Johnson SD
    Evolution; 2016 Jan; 70(1):126-39. PubMed ID: 26593965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic analysis of sexual systems in Inuleae (Asteraceae).
    Torices R; Anderberg AA
    Am J Bot; 2009 May; 96(5):1011-9. PubMed ID: 21628252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of ovule number and flower size in wind-pollinated plants.
    Friedman J; Barrett SC
    Am Nat; 2011 Feb; 177(2):246-57. PubMed ID: 21460560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of birds and insects in pollination shifts of Scrophularia (Scrophulariaceae).
    Navarro-Pérez ML; López J; Fernández-Mazuecos M; Rodríguez-Riaño T; Vargas P; Ortega-Olivencia A
    Mol Phylogenet Evol; 2013 Oct; 69(1):239-54. PubMed ID: 23756207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pollination and mating systems of Apodanthaceae and the distribution of reproductive traits in parasitic angiosperms.
    Bellot S; Renner SS
    Am J Bot; 2013 Jun; 100(6):1083-94. PubMed ID: 23703856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of pollen release biomechanics in Thalictrum: implications for evolutionary transitions between animal and wind pollination.
    Timerman D; Barrett SCH
    New Phytol; 2019 Nov; 224(3):1121-1132. PubMed ID: 31172529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect and wind pollination of an alpine biennial Aconitum gymnandrum (Ranunculaceae).
    Duan YW; Zhang TF; He YP; Liu JQ
    Plant Biol (Stuttg); 2009 Nov; 11(6):796-802. PubMed ID: 19796356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ortholog of MIXTA-like2 controls epidermal cell shape in flowers of Thalictrum.
    Di Stilio VS; Martin C; Schulfer AF; Connelly CF
    New Phytol; 2009 Aug; 183(3):718-728. PubMed ID: 19659588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergent selection on the biomechanical properties of stamens under wind and insect pollination.
    Timerman D; Barrett SCH
    Proc Biol Sci; 2018 Dec; 285(1893):20182251. PubMed ID: 30963912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the pathway to wind pollination: heritabilities and genetic correlations of inflorescence traits associated with wind pollination in Schiedea salicaria (Caryophyllaceae).
    Weller SG; Sakai AK; Culley TM; Campbell DR; Dunbar-Wallis AK
    J Evol Biol; 2006 Mar; 19(2):331-42. PubMed ID: 16599909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogeny of the Cucurbitales based on DNA sequences of nine loci from three genomes: implications for morphological and sexual system evolution.
    Zhang LB; Simmons MP; Kocyan A; Renner SS
    Mol Phylogenet Evol; 2006 May; 39(2):305-22. PubMed ID: 16293423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rapid dissolution of dioecy by experimental evolution.
    Cossard GG; Gerchen JF; Li X; Cuenot Y; Pannell JR
    Curr Biol; 2021 Mar; 31(6):1277-1283.e5. PubMed ID: 33472050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-genome phylogeny of Momordica (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia.
    Schaefer H; Renner SS
    Mol Phylogenet Evol; 2010 Feb; 54(2):553-60. PubMed ID: 19686858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insect pollination for most of angiosperm evolutionary history.
    Stephens RE; Gallagher RV; Dun L; Cornwell W; Sauquet H
    New Phytol; 2023 Oct; 240(2):880-891. PubMed ID: 37276503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel floral adaptations to pollination by fungus gnats within the genus Mitella (Saxifragaceae).
    Okuyama Y; Pellmyr O; Kato M
    Mol Phylogenet Evol; 2008 Feb; 46(2):560-75. PubMed ID: 18248825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.