BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1222 related articles for article (PubMed ID: 22289907)

  • 1. Physiological adaptations to low-volume, high-intensity interval training in health and disease.
    Gibala MJ; Little JP; Macdonald MJ; Hawley JA
    J Physiol; 2012 Mar; 590(5):1077-84. PubMed ID: 22289907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential for high-intensity interval training to reduce cardiometabolic disease risk.
    Kessler HS; Sisson SB; Short KR
    Sports Med; 2012 Jun; 42(6):489-509. PubMed ID: 22587821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes.
    Laursen PB; Jenkins DG
    Sports Med; 2002; 32(1):53-73. PubMed ID: 11772161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological adaptations to interval training and the role of exercise intensity.
    MacInnis MJ; Gibala MJ
    J Physiol; 2017 May; 595(9):2915-2930. PubMed ID: 27748956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective.
    Atakan MM; Li Y; Koşar ŞN; Turnagöl HH; Yan X
    Int J Environ Res Public Health; 2021 Jul; 18(13):. PubMed ID: 34281138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms.
    Little JP; Safdar A; Wilkin GP; Tarnopolsky MA; Gibala MJ
    J Physiol; 2010 Mar; 588(Pt 6):1011-22. PubMed ID: 20100740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic β
    Hostrup M; Onslev J; Jacobson GA; Wilson R; Bangsbo J
    J Physiol; 2018 Jan; 596(2):231-252. PubMed ID: 28983994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [High intensity training (HIT) for the improvement of endurance capacity of recreationally active people and in prevention & rehabilitation].
    Wahl P; Hägele M; Zinner C; Bloch W; Mester J
    Wien Med Wochenschr; 2010 Dec; 160(23-24):627-36. PubMed ID: 21221914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Intensity Resistance Exercise Training vs. High Intensity (Endurance) Interval Training to Fight Cardiometabolic Risk Factors in Overweight Men 30-50 Years Old.
    Tuttor M; von Stengel S; Kohl M; Lell M; Scharf M; Uder M; Wittke A; Kemmler W
    Front Sports Act Living; 2020; 2():68. PubMed ID: 33345059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-intensity interval exercise training for public health: a big HIT or shall we HIT it on the head?
    Biddle SJ; Batterham AM
    Int J Behav Nutr Phys Act; 2015 Jul; 12():95. PubMed ID: 26187579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Home-hit improves muscle capillarisation and eNOS/NAD(P)Hoxidase protein ratio in obese individuals with elevated cardiovascular disease risk.
    Scott SN; Shepherd SO; Hopkins N; Dawson EA; Strauss JA; Wright DJ; Cooper RG; Kumar P; Wagenmakers AJM; Cocks M
    J Physiol; 2019 Aug; 597(16):4203-4225. PubMed ID: 31218680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Train like an athlete: applying exercise interventions to manage type 2 diabetes.
    Savikj M; Zierath JR
    Diabetologia; 2020 Aug; 63(8):1491-1499. PubMed ID: 32529411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training techniques to improve endurance exercise performances.
    Kubukeli ZN; Noakes TD; Dennis SC
    Sports Med; 2002; 32(8):489-509. PubMed ID: 12076176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance.
    McKay BR; Paterson DH; Kowalchuk JM
    J Appl Physiol (1985); 2009 Jul; 107(1):128-38. PubMed ID: 19443744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and performance adaptations to high-intensity interval training.
    Gibala MJ; Jones AM
    Nestle Nutr Inst Workshop Ser; 2013; 76():51-60. PubMed ID: 23899754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.
    Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C
    J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans.
    Burgomaster KA; Howarth KR; Phillips SM; Rakobowchuk M; Macdonald MJ; McGee SL; Gibala MJ
    J Physiol; 2008 Jan; 586(1):151-60. PubMed ID: 17991697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle.
    Fiorenza M; Gunnarsson TP; Hostrup M; Iaia FM; Schena F; Pilegaard H; Bangsbo J
    J Physiol; 2018 Jul; 596(14):2823-2840. PubMed ID: 29727016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise-induced skeletal muscle signaling pathways and human athletic performance.
    Camera DM; Smiles WJ; Hawley JA
    Free Radic Biol Med; 2016 Sep; 98():131-143. PubMed ID: 26876650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutritional strategies to support adaptation to high-intensity interval training in team sports.
    Gibala MJ
    Nestle Nutr Inst Workshop Ser; 2013; 75():41-9. PubMed ID: 23765349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 62.