These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 22290176)
1. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte. Solarska R; Jurczakowski R; Augustynski J Nanoscale; 2012 Mar; 4(5):1553-6. PubMed ID: 22290176 [TBL] [Abstract][Full Text] [Related]
2. Discovery of Overcoating Metal Oxides on Photoelectrode for Water Splitting by Automated Screening. Saito R; Miseki Y; Nini W; Sayama K ACS Comb Sci; 2015 Oct; 17(10):592-9. PubMed ID: 26325162 [TBL] [Abstract][Full Text] [Related]
3. Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting. Gonçalves RH; Leite LD; Leite ER ChemSusChem; 2012 Dec; 5(12):2341-7. PubMed ID: 23139181 [TBL] [Abstract][Full Text] [Related]
4. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination. Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929 [TBL] [Abstract][Full Text] [Related]
5. Interfacing Photosynthetic Membrane Protein with Mesoporous WO Pang H; Zhao G; Liu G; Zhang H; Hai X; Wang S; Song H; Ye J Small; 2018 May; 14(19):e1800104. PubMed ID: 29633500 [TBL] [Abstract][Full Text] [Related]
6. Photoanodes based on nanostructured WO3 for water splitting. Tacca A; Meda L; Marra G; Savoini A; Caramori S; Cristino V; Bignozzi CA; Gonzalez Pedro V; Boix PP; Gimenez S; Bisquert J Chemphyschem; 2012 Aug; 13(12):3025-34. PubMed ID: 22532437 [TBL] [Abstract][Full Text] [Related]
7. Overall water splitting under visible light through a two-step photoexcitation between TaON and WO3 in the presence of an iodate-iodide shuttle redox mediator. Abe R; Higashi M; Domen K ChemSusChem; 2011 Feb; 4(2):228-37. PubMed ID: 21275062 [TBL] [Abstract][Full Text] [Related]
8. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles. Miyauchi M Phys Chem Chem Phys; 2008 Nov; 10(41):6258-65. PubMed ID: 18936850 [TBL] [Abstract][Full Text] [Related]
9. Photo-electrochemical Oxidation of Organic C1 Molecules over WO3 Films in Aqueous Electrolyte: Competition Between Water Oxidation and C1 Oxidation. Reichert R; Zambrzycki C; Jusys Z; Behm RJ ChemSusChem; 2015 Nov; 8(21):3677-87. PubMed ID: 26382643 [TBL] [Abstract][Full Text] [Related]
10. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation. Sun S; Wang W; Zeng S; Shang M; Zhang L J Hazard Mater; 2010 Jun; 178(1-3):427-33. PubMed ID: 20172648 [TBL] [Abstract][Full Text] [Related]
11. Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2-WO3 photoanodes. Georgieva J; Valova E; Armyanov S; Philippidis N; Poulios I; Sotiropoulos S J Hazard Mater; 2012 Apr; 211-212():30-46. PubMed ID: 22172459 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst. Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494 [TBL] [Abstract][Full Text] [Related]
13. High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. Arai T; Konishi Y; Iwasaki Y; Sugihara H; Sayama K J Comb Chem; 2007; 9(4):574-81. PubMed ID: 17571904 [TBL] [Abstract][Full Text] [Related]
14. Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. Higashi M; Domen K; Abe R J Am Chem Soc; 2012 Apr; 134(16):6968-71. PubMed ID: 22489629 [TBL] [Abstract][Full Text] [Related]
15. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3. Wang N; Wang D; Li M; Shi J; Li C Nanoscale; 2014 Feb; 6(4):2061-6. PubMed ID: 24384843 [TBL] [Abstract][Full Text] [Related]
16. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Abdi FF; Han L; Smets AH; Zeman M; Dam B; van de Krol R Nat Commun; 2013; 4():2195. PubMed ID: 23893238 [TBL] [Abstract][Full Text] [Related]
17. Branched WO3 nanosheet array with layered C3 N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Hou Y; Zuo F; Dagg AP; Liu J; Feng P Adv Mater; 2014 Aug; 26(29):5043-9. PubMed ID: 24848321 [TBL] [Abstract][Full Text] [Related]
18. In situ growth of metal particles on 3D urchin-like WO3 nanostructures. Xi G; Ye J; Ma Q; Su N; Bai H; Wang C J Am Chem Soc; 2012 Apr; 134(15):6508-11. PubMed ID: 22468742 [TBL] [Abstract][Full Text] [Related]
19. Enhanced photoelectrocatalytic performance of Zn-doped WO(3) photocatalysts for nitrite ions degradation under visible light. Cheng XF; Leng WH; Liu DP; Zhang JQ; Cao CN Chemosphere; 2007 Aug; 68(10):1976-84. PubMed ID: 17482660 [TBL] [Abstract][Full Text] [Related]
20. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. Zhu T; Chong MN; Chan ES ChemSusChem; 2014 Nov; 7(11):2974-97. PubMed ID: 25274424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]