These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 2229036)

  • 1. Binding protein-dependent transport systems.
    Higgins CF; Hyde SC; Mimmack MM; Gileadi U; Gill DR; Gallagher MP
    J Bioenerg Biomembr; 1990 Aug; 22(4):571-92. PubMed ID: 2229036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance.
    Doige CA; Ames GF
    Annu Rev Microbiol; 1993; 47():291-319. PubMed ID: 7504904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periplasmic binding protein-dependent transport systems: the membrane-associated components.
    Higgins CF; Gallagher MP; Hyde SC; Mimmack ML; Pearce SR
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):353-64; discussion 364-5. PubMed ID: 1970642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport.
    Hyde SC; Emsley P; Hartshorn MJ; Mimmack MM; Gileadi U; Pearce SR; Gallagher MP; Gill DR; Hubbard RE; Higgins CF
    Nature; 1990 Jul; 346(6282):362-5. PubMed ID: 1973824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases.
    Ames GF; Mimura CS; Shyamala V
    FEMS Microbiol Rev; 1990 Aug; 6(4):429-46. PubMed ID: 2147378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters.
    Ames GF; Lecar H
    FASEB J; 1992 Jun; 6(9):2660-6. PubMed ID: 1377140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secretion of peptides and proteins lacking hydrophobic signal sequences: the role of adenosine triphosphate-driven membrane translocators.
    Kuchler K; Thorner J
    Endocr Rev; 1992 Aug; 13(3):499-514. PubMed ID: 1425485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo.
    Mimmack ML; Gallagher MP; Pearce SR; Hyde SC; Booth IR; Higgins CF
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8257-61. PubMed ID: 2682642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adventures with ABC-proteins: highly conserved ATP-dependent transporters.
    Holland KA; Holland IB
    Acta Microbiol Immunol Hung; 2005; 52(3-4):309-22. PubMed ID: 16400872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria.
    Higgins CF; Hiles ID; Salmond GP; Gill DR; Downie JA; Evans IJ; Holland IB; Gray L; Buckel SD; Bell AW
    Nature; 1986 Oct 2-8; 323(6087):448-50. PubMed ID: 3762694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new subfamily of bacterial ABC-type transport systems catalyzing export of drugs and carbohydrates.
    Reizer J; Reizer A; Saier MH
    Protein Sci; 1992 Oct; 1(10):1326-32. PubMed ID: 1303751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioenergetics and solute uptake under extreme conditions.
    Albers SV; Van de Vossenberg JL; Driessen AJ; Konings WN
    Extremophiles; 2001 Oct; 5(5):285-94. PubMed ID: 11699642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance protein MRP1 and its apical isoform MRP2.
    Keppler D; Leier I; Jedlitschky G; König J
    Chem Biol Interact; 1998 Apr; 111-112():153-61. PubMed ID: 9679551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial solute uptake and efflux systems.
    Lolkema JS; Poolman B; Konings WN
    Curr Opin Microbiol; 1998 Apr; 1(2):248-53. PubMed ID: 10066480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal import through microbial membranes.
    Ferguson AD; Deisenhofer J
    Cell; 2004 Jan; 116(1):15-24. PubMed ID: 14718163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial periplasmic transport systems: structure, mechanism, and evolution.
    Ames GF
    Annu Rev Biochem; 1986; 55():397-425. PubMed ID: 3527048
    [No Abstract]   [Full Text] [Related]  

  • 17. Bacterial periplasmic permeases as model systems for multidrug resistance (MDR) and the cystic fibrosis transmembrane conductance regulator (CFTR).
    Ames GF
    Soc Gen Physiol Ser; 1993; 48():77-94. PubMed ID: 7684868
    [No Abstract]   [Full Text] [Related]  

  • 18. Conformational changes of the bacterial type I ATP-binding cassette importer HisQMP2 at distinct steps of the catalytic cycle.
    Heuveling J; Frochaux V; Ziomkowska J; Wawrzinek R; Wessig P; Herrmann A; Schneider E
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):106-16. PubMed ID: 24021237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional exchangeability of the ABC proteins of the periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli.
    Hekstra D; Tommassen J
    J Bacteriol; 1993 Oct; 175(20):6546-52. PubMed ID: 8407831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupled active transport mechanisms accounting for low selectivity in multidrug carriers: P-glycoprotein and SMR antiporters.
    Krupka RM
    J Membr Biol; 1999 Nov; 172(2):129-43. PubMed ID: 10556361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.