These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Thioester enolate stabilization in the acyl-CoA dehydrogenases: the effect of 5-deaza-flavin substitution. Rudik I; Thorpe C Arch Biochem Biophys; 2001 Aug; 392(2):341-8. PubMed ID: 11488611 [TBL] [Abstract][Full Text] [Related]
43. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569 [TBL] [Abstract][Full Text] [Related]
44. Mechanism and structure of thioredoxin reductase from Escherichia coli. Williams CH FASEB J; 1995 Oct; 9(13):1267-76. PubMed ID: 7557016 [TBL] [Abstract][Full Text] [Related]
45. Flavin conformational changes in the catalytic cycle of p-hydroxybenzoate hydroxylase substituted with 6-azido- and 6-aminoflavin adenine dinucleotide. Palfey BA; Ballou DP; Massey V Biochemistry; 1997 Dec; 36(50):15713-23. PubMed ID: 9398300 [TBL] [Abstract][Full Text] [Related]
46. A Novel F420-dependent Thioredoxin Reductase Gated by Low Potential FAD: A TOOL FOR REDOX REGULATION IN AN ANAEROBE. Susanti D; Loganathan U; Mukhopadhyay B J Biol Chem; 2016 Oct; 291(44):23084-23100. PubMed ID: 27590343 [TBL] [Abstract][Full Text] [Related]
47. Characterization of lipoamide dehydrogenase from Escherichia coli lacking the redox active disulfide: C44S and C49S. Hopkins N; Williams CH Biochemistry; 1995 Sep; 34(37):11757-65. PubMed ID: 7547908 [TBL] [Abstract][Full Text] [Related]
48. Identification of the naturally occurring flavin of nitroalkane oxidase from fusarium oxysporum as a 5-nitrobutyl-FAD and conversion of the enzyme to the active FAD-containing form. Gadda G; Edmondson RD; Russell DH; Fitzpatrick PF J Biol Chem; 1997 Feb; 272(9):5563-70. PubMed ID: 9038163 [TBL] [Abstract][Full Text] [Related]
49. Crystal structure of Arabidopsis thaliana NADPH dependent thioredoxin reductase at 2.5 A resolution. Dai S; Saarinen M; Ramaswamy S; Meyer Y; Jacquot JP; Eklund H J Mol Biol; 1996 Dec; 264(5):1044-57. PubMed ID: 9000629 [TBL] [Abstract][Full Text] [Related]
50. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ; Scrutton NS; Munro AW Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197 [TBL] [Abstract][Full Text] [Related]
51. Reaction of 2-thio-FAD-reconstituted p-hydroxybenzoate hydroxylase with hydrogen peroxide. Formation of a covalent flavin-protein linkage. Claiborne A; Hemmerich P; Massey V; Lawton R J Biol Chem; 1983 May; 258(9):5433-9. PubMed ID: 6853525 [TBL] [Abstract][Full Text] [Related]
52. Enzyme-monitored turnover of Escherichia coli thioredoxin reductase: insights for catalysis. Lennon BW; Williams CH Biochemistry; 1996 Apr; 35(15):4704-12. PubMed ID: 8664260 [TBL] [Abstract][Full Text] [Related]
53. Directed mutagenesis of the redox-active disulfide in the flavoenzyme mercuric ion reductase. Schultz PG; Au KG; Walsh CT Biochemistry; 1985 Nov; 24(24):6840-8. PubMed ID: 3907703 [TBL] [Abstract][Full Text] [Related]
54. Aspartate 120 of Escherichia coli methylenetetrahydrofolate reductase: evidence for major roles in folate binding and catalysis and a minor role in flavin reactivity. Trimmer EE; Ballou DP; Galloway LJ; Scannell SA; Brinker DR; Casas KR Biochemistry; 2005 May; 44(18):6809-22. PubMed ID: 15865426 [TBL] [Abstract][Full Text] [Related]
55. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Lee SR; Bar-Noy S; Kwon J; Levine RL; Stadtman TC; Rhee SG Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2521-6. PubMed ID: 10688911 [TBL] [Abstract][Full Text] [Related]
56. Active site studies of DT-diaphorase employing artificial flavins. Tedeschi G; Chen S; Massey V J Biol Chem; 1995 Feb; 270(6):2512-6. PubMed ID: 7531691 [TBL] [Abstract][Full Text] [Related]
57. Spectral evidence for a flavin adduct in a monoalkylated derivative of pig heart lipoamide dehydrogenase. Thorpe C; Williams CH J Biol Chem; 1976 Dec; 251(23):7726-8. PubMed ID: 187594 [TBL] [Abstract][Full Text] [Related]
58. Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase. Vermilion JL; Ballou DP; Massey V; Coon MJ J Biol Chem; 1981 Jan; 256(1):266-77. PubMed ID: 6778861 [TBL] [Abstract][Full Text] [Related]
59. Identification and characterization of the functional amino acids at the active site of the large thioredoxin reductase from Plasmodium falciparum. Gilberger TW; Walter RD; Müller S J Biol Chem; 1997 Nov; 272(47):29584-9. PubMed ID: 9368022 [TBL] [Abstract][Full Text] [Related]
60. Insights into the specificity of thioredoxin reductase-thioredoxin interactions. A structural and functional investigation of the yeast thioredoxin system. Oliveira MA; Discola KF; Alves SV; Medrano FJ; Guimarães BG; Netto LE Biochemistry; 2010 Apr; 49(15):3317-26. PubMed ID: 20235561 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]