These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2229096)

  • 1. Biomechanics of the venous wall under simulated arterial conditions.
    Berceli SA; Showalter DP; Sheppeck RA; Mandarino WA; Borovetz HS
    J Biomech; 1990; 23(10):985-9. PubMed ID: 2229096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics of the arterial wall under simulated flow conditions.
    Brant AM; Shah SS; Rodgers VG; Hoffmeister J; Herman IM; Kormos RL; Borovetz HS
    J Biomech; 1988; 21(2):107-13. PubMed ID: 3350825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of hemodynamic forces in the ex vivo arterialization of human saphenous veins.
    Berard X; Déglise S; Alonso F; Saucy F; Meda P; Bordenave L; Corpataux JM; Haefliger JA
    J Vasc Surg; 2013 May; 57(5):1371-82. PubMed ID: 23351647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization in vitro of the biomechanical properties of anastomosed host artery-graft combinations.
    Rodgers VG; Teodori MF; Brant AM; Borovetz HS
    J Vasc Surg; 1986 Oct; 4(4):396-402. PubMed ID: 3761485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complex distribution of arterial system mechanical properties, pulsatile hemodynamics, and vascular stresses emerges from three simple adaptive rules.
    Nguyen PH; Coquis-Knezek SF; Mohiuddin MW; Tuzun E; Quick CM
    Am J Physiol Heart Circ Physiol; 2015 Mar; 308(5):H407-15. PubMed ID: 25502109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Modeling of elastic deformation and vascular resistance of arterial and venous vasa vasorum].
    Maurice G; Wang X; Lehalle B; Stoltz JF
    J Mal Vasc; 1998 Oct; 23(4):282-8. PubMed ID: 9827409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical events within the arterial wall under the forces of pulsatile flow: a review.
    Hodis S; Zamir M
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1595-602. PubMed ID: 22098861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elasticity and compliance of canine femoral and jugular vein segments.
    Baird RN; Abbott WM
    Am J Physiol; 1977 Jul; 233(1):H15-21. PubMed ID: 879331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Veins are no arteries: even moderate arterial pressure induces significant adhesion molecule expression of vein grafts in an ex vivo circulation model.
    Nolte A; Secker S; Walker T; Greiner TO; Neumann B; Simon P; Ziemer G; Wendel HP
    J Cardiovasc Surg (Torino); 2011 Apr; 52(2):251-9. PubMed ID: 21460776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full Mimicking of Coronary Hemodynamics for Ex-Vivo Stimulation of Human Saphenous Veins.
    Piola M; Ruiter M; Vismara R; Mastrullo V; Agrifoglio M; Zanobini M; Pesce M; Soncini M; Fiore GB
    Ann Biomed Eng; 2017 Apr; 45(4):884-897. PubMed ID: 27752921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in vein dynamics ranging from low to high pressure levels as a determinant of the differences in vein adaptation to arterial hemodynamic conditions.
    Zócalo Y; Bia D; Pessana FM; Armentano RL
    Artif Organs; 2007 Jul; 31(7):575-80. PubMed ID: 17584483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled radial and longitudinal displacements and stresses within the arterial wall in pulsatile flow under tethered and free-wall conditions.
    Hodis S; Zamir M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051923. PubMed ID: 21728587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical events within the arterial wall: The dynamic context for elastin fatigue.
    Hodis S; Zamir M
    J Biomech; 2009 May; 42(8):1010-6. PubMed ID: 19386312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of vein graft atherosclerosis: LDL metabolism and endothelial actin reorganization.
    Berceli SA; Borovetz HS; Sheppeck RA; Moosa HH; Warty VS; Armany MA; Herman IM
    J Vasc Surg; 1991 Feb; 13(2):336-47. PubMed ID: 1990174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses.
    Li MX; Beech-Brandt JJ; John LR; Hoskins PR; Easson WJ
    J Biomech; 2007; 40(16):3715-24. PubMed ID: 17723230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of anisotropic elastic properties of the arteries by exponential and polynomial strain energy functions.
    Hudetz AG; Monos E
    Acta Physiol Acad Sci Hung; 1981; 57(2):111-22. PubMed ID: 7315373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.