These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 22291423)
1. Preserving cardiac and pulmonary function after cardiopulmonary bypass: effects of reactive nitrogen species. Lassaletta AD; Sellke FW Eur J Cardiothorac Surg; 2012 Feb; 41(2):396-7. PubMed ID: 22291423 [No Abstract] [Full Text] [Related]
2. The role of leukocyte depletion in reducing injury to myocardium and lung during cardiopulmonary bypass. Hachida M; Hanayama N; Okamura T; Akasawa T; Maeda T; Bonkohara Y; Endo M; Hashimoto A; Koyanagi H ASAIO J; 1995; 41(3):M291-4. PubMed ID: 8573809 [TBL] [Abstract][Full Text] [Related]
3. Myocardial injury and protection related to cardiopulmonary bypass. De Hert S; Moerman A Best Pract Res Clin Anaesthesiol; 2015 Jun; 29(2):137-49. PubMed ID: 26060026 [TBL] [Abstract][Full Text] [Related]
4. Doxycycline reduces cardiac matrix metalloproteinase-2 activity but does not ameliorate myocardial dysfunction during reperfusion in coronary artery bypass patients undergoing cardiopulmonary bypass. Schulze CJ; Castro MM; Kandasamy AD; Cena J; Bryden C; Wang SH; Koshal A; Tsuyuki RT; Finegan BA; Schulz R Crit Care Med; 2013 Nov; 41(11):2512-20. PubMed ID: 23928836 [TBL] [Abstract][Full Text] [Related]
5. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept. Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205 [TBL] [Abstract][Full Text] [Related]
6. Tackling reperfusion injury after cardiopulmonary bypass with tetrahydrobiopterin: new therapeutic potentials for this phenylketonuria drug? Octavia Y; Assman NL; Moens AL Eur J Cardiothorac Surg; 2012 Jan; 41(1):233-4. PubMed ID: 21900021 [No Abstract] [Full Text] [Related]
7. Beating heart surgery with pulmonary perfusion and ventilation during cardiopulmonary bypass: target organs' perfusion without plegia. Macedo FI; Gologorsky E; Costa AC; Pham SM; Salerno TA Semin Thorac Cardiovasc Surg; 2012; 24(4):308-10. PubMed ID: 23465681 [TBL] [Abstract][Full Text] [Related]
8. Role of poly(ADP-ribose) polymerase activation in the pathogenesis of cardiopulmonary dysfunction in a canine model of cardiopulmonary bypass. Szabó G; Soós P; Bährle S; Zsengellér Z; Flechtenmacher C; Hagl S; Szabó C Eur J Cardiothorac Surg; 2004 May; 25(5):825-32. PubMed ID: 15082289 [TBL] [Abstract][Full Text] [Related]
9. Studies of hypoxemic/reoxygenation injury: with aortic clamping. XII. Delay of cardiac reoxygenation damage in the presence of cyanosis: a new concept of controlled cardiac reoxygenation. Morita K; Ihnken K; Buckberg GD J Thorac Cardiovasc Surg; 1995 Oct; 110(4 Pt 2):1265-73. PubMed ID: 7475178 [TBL] [Abstract][Full Text] [Related]
10. Custodiol-N, the novel cardioplegic solution reduces ischemia/reperfusion injury after cardiopulmonary bypass. Veres G; Radovits T; Merkely B; Karck M; Szabó G J Cardiothorac Surg; 2015 Feb; 10():27. PubMed ID: 25890005 [TBL] [Abstract][Full Text] [Related]
11. The antioxidant N-acetylcysteine preserves myocardial function and diminishes oxidative stress after cardioplegic arrest. Fischer UM; Cox CS; Allen SJ; Stewart RH; Mehlhorn U; Laine GA J Thorac Cardiovasc Surg; 2003 Nov; 126(5):1483-8. PubMed ID: 14666023 [TBL] [Abstract][Full Text] [Related]
13. Studies of hypoxemic/reoxygenation injury: without aortic clamping. VII. Counteraction of oxidant damage by exogenous antioxidants: coenzyme Q10. Morita K; Ihnken K; Buckberg GD; Young HH J Thorac Cardiovasc Surg; 1995 Oct; 110(4 Pt 2):1221-7. PubMed ID: 7475173 [TBL] [Abstract][Full Text] [Related]
14. Tetrahydrobiopterin improves cardiac and pulmonary function after cardiopulmonary bypass. Szabó G; Seres L; Soós P; Gorenflo M; Merkely B; Horkay F; Karck M; Radovits T Eur J Cardiothorac Surg; 2011 Sep; 40(3):695-700. PubMed ID: 21324707 [TBL] [Abstract][Full Text] [Related]
15. Addition of dextran sulfate to blood cardioplegia attenuates reperfusion injury in a porcine model of cardiopulmonary bypass. Banz Y; Rieben R; Zobrist C; Meier P; Shaw S; Lanz J; Carrel T; Berdat P Eur J Cardiothorac Surg; 2008 Sep; 34(3):653-60. PubMed ID: 18572413 [TBL] [Abstract][Full Text] [Related]
16. Effect of N-acetylcysteine in attenuating ischemic reperfusion injury in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Prabhu A; Sujatha DI; Kanagarajan N; Vijayalakshmi MA; Ninan B Ann Vasc Surg; 2009; 23(5):645-51. PubMed ID: 19467834 [TBL] [Abstract][Full Text] [Related]
17. Studies of hypoxemic/reoxygenation injury: without aortic clamping. VI. Counteraction of oxidant damage by exogenous antioxidants: N-(2-mercaptopropionyl)-glycine and catalase. Ihnken K; Morita K; Buckberg GD; Sherman MP; Young HH J Thorac Cardiovasc Surg; 1995 Oct; 110(4 Pt 2):1212-20. PubMed ID: 7475172 [TBL] [Abstract][Full Text] [Related]
18. Abstracts of the 3rd International Symposium on the Pathophysiology of Cardiopulmonary Bypass. Myocardial cell damage and myocardial protection. Aachen, Germany. 16 December 2000. Crit Care; 2001; 5 Suppl B():105-14. PubMed ID: 15992418 [No Abstract] [Full Text] [Related]
19. Studies of hypoxemic/reoxygenation injury: with aortic clamping. X. Exogenous antioxidants to avoid nullification of the cardioprotective effects of blood cardioplegia. Morita K; Ihnken K; Buckberg GD; Matheis G; Sherman MP; Young HH J Thorac Cardiovasc Surg; 1995 Oct; 110(4 Pt 2):1245-54. PubMed ID: 7475176 [TBL] [Abstract][Full Text] [Related]