These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22291551)

  • 1. Selective Detection of Formaldehyde Gas Using a Cd-Doped TiO(2)-SnO(2) Sensor.
    Zeng W; Liu T; Wang Z; Tsukimoto S; Saito M; Ikuhara Y
    Sensors (Basel); 2009; 9(11):9029-38. PubMed ID: 22291551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of coral-like SnO2 nanostructures with dense TiO2 nanoparticles for a self-cleaning gas sensor.
    Wan Y; Liu J; Fu X; Zhang X; Meng F; Yu X; Jin Z; Kong L; Liu J
    Talanta; 2012 Sep; 99():394-403. PubMed ID: 22967570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospinning Hetero-Nanofibers In₂O₃/SnO₂ of Homotype Heterojunction with High Gas Sensing Activity.
    Du H; Yao P; Sun Y; Wang J; Wang H; Yu N
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28792433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Pt Dopant and Sol Gel Technology for Sensitivity Enhancement of TiO2/SnO2Humidity Sensors.
    Chang WY; Ke WW; Hsieh YS; Kuo NH; Lin YC
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():1937-40. PubMed ID: 17282600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of SnO2-SnO nanocomposites with p-n heterojunctions for the low-temperature sensing of NO2 gas.
    Li L; Zhang C; Chen W
    Nanoscale; 2015 Jul; 7(28):12133-42. PubMed ID: 26123121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dense doping of indium to coral-like SnO2 nanostructures through a plasma-assisted strategy for sensitive and selective detection of chlorobenzene.
    Wan Y; Liu J; Li W; Meng F; Jin Z; Yu X; Huang X; Liu J
    Nanotechnology; 2011 Aug; 22(31):315501. PubMed ID: 21747163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formaldehyde gas sensor with extremely high response employing cobalt-doped SnO
    Zhou S; Wang H; Hu J; Lv T; Rong Q; Zhang Y; Zi B; Chen M; Zhang D; Wei J; Zhang J; Liu Q
    Nanoscale Adv; 2022 Feb; 4(3):824-836. PubMed ID: 36131821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Gas Sensing Properties of Single La-Doped SnO₂ Nanobelts.
    Wu Y; Zhang H; Liu Y; Chen W; Ma J; Li S; Qin Z
    Sensors (Basel); 2015 Jun; 15(6):14230-40. PubMed ID: 26087374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal Synthesis of Hierarchical SnO
    Ren P; Qi L; You K; Shi Q
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc Oxide Coated Tin Oxide Nanofibers for Improved Selective Acetone Sensing.
    Du H; Li X; Yao P; Wang J; Sun Y; Dong L
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 29987213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Energy Faceted SnO₂-Coated TiO₂ Nanobelt Heterostructure for Near-Ambient Temperature-Responsive Ethanol Sensor.
    Chen G; Ji S; Li H; Kang X; Chang S; Wang Y; Yu G; Lu J; Claverie J; Sang Y; Liu H
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24950-6. PubMed ID: 26484799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal Synthesis of CeO₂-SnO₂ Nanoflowers for Improving Triethylamine Gas Sensing Property.
    Xue D; Wang Y; Cao J; Zhang Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30544829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the enhanced gas sensing properties of tin dioxide samples doped with different catalytic transition elements.
    Yang F; Guo Z
    J Colloid Interface Sci; 2015 Jun; 448():265-74. PubMed ID: 25744860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO₂ Modified Layers.
    Xue N; Zhang Q; Zhang S; Zong P; Yang F
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29036898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocrystalline SnO2:F thin films for liquid petroleum gas sensors.
    Chaisitsak S
    Sensors (Basel); 2011; 11(7):7127-40. PubMed ID: 22164007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive Formaldehyde Sensor Based on SnO
    Deng Z; Zhang Y; Xu D; Zi B; Zeng J; Lu Q; Xiong K; Zhang J; Zhao J; Liu Q
    ACS Sens; 2022 Sep; 7(9):2577-2588. PubMed ID: 36047694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-sensing properties of needle-shaped Ni-doped SnO2 nanocrystals prepared by a simple sol-gel chemical precipitation method.
    Yogamalar R; Mahendran V; Srinivasan R; Beitollahi A; Kumar RP; Bose AC; Vinu A
    Chem Asian J; 2010 Nov; 5(11):2379-85. PubMed ID: 20839275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO₂/Zeolite Sensor.
    Sun Y; Wang J; Li X; Du H; Huang Q; Wang X
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29382155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection.
    Li Z; Zhao Q; Fan W; Zhan J
    Nanoscale; 2011 Apr; 3(4):1646-52. PubMed ID: 21279215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of textural properties on the response of a SnO2-based gas sensor for the detection of chemical warfare agents.
    Lee SC; Kim SY; Lee WS; Jung SY; Hwang BW; Ragupathy D; Lee DD; Lee SY; Kim JC
    Sensors (Basel); 2011; 11(7):6893-904. PubMed ID: 22163991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.