These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22291556)

  • 1. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels.
    Lee PH; Hwang SS
    Sensors (Basel); 2009; 9(11):9104-21. PubMed ID: 22291556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell.
    Wilberforce T; Ijaodola O; Khatib FN; Ogungbemi EO; El Hassan Z; Thompson J; Olabi AG
    Sci Total Environ; 2019 Oct; 688():1016-1035. PubMed ID: 31726535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field.
    Lee PH; Han SS; Hwang SS
    Sensors (Basel); 2008 Mar; 8(3):1475-1487. PubMed ID: 27879774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Modeling and Evaluation of PEM Used for Fuel Cell Vehicles.
    Darvishi Y; Hassan-Beygi SR; Zarafshan P; Hooshyari K; Malaga-Toboła U; Gancarz M
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Investigation on the Anode Flow Field Design for an Air-Cooled Open-Cathode Proton Exchange Membrane Fuel Cell.
    Deng Z; Li B; Xing S; Zhao C; Wang H
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional multiphysics coupling numerical simulation of a proton conductor solid oxide fuel cell based on multi-defect transport.
    Li Q; Sun X; Shen L; Li G
    Phys Chem Chem Phys; 2023 Mar; 25(10):7154-7169. PubMed ID: 36810664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifying the Catalyst Layer Using Polyvinyl Alcohol for the Performance Improvement of Proton Exchange Membrane Fuel Cells under Low Humidity Operations.
    Jienkulsawad P; Chen YS; Arpornwichanop A
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32825148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of an air-cathode microbial fuel cell under varied relative humidity conditions in the cathode chamber.
    Lee M; Kakarla R; Min B
    Bioprocess Biosyst Eng; 2019 Aug; 42(8):1247-1254. PubMed ID: 31030377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuel Cell Using Squid Axon Electrolyte and Its Proton Conductivity.
    Furuseki T; Matsuo Y
    J Funct Biomater; 2020 Dec; 11(4):. PubMed ID: 33287321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review.
    Marappan M; Palaniswamy K; Velumani T; Chul KB; Velayutham R; Shivakumar P; Sundaram S
    Chem Rec; 2021 Apr; 21(4):663-714. PubMed ID: 33543591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Cell Temperature and Reactant Humidification on Anion Exchange Membrane Fuel Cells.
    Truong VM; Duong NB; Wang CL; Yang H
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and fuel cell performance of catalyst layers using sulfonated polyimide ionomers.
    Omata T; Tanaka M; Miyatake K; Uchida M; Uchida H; Watanabe M
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):730-7. PubMed ID: 22201410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the power performance of sediment microbial fuel cells by novel strategies: Overlying water flow and hydraulic-driven cathode rotating.
    Guo F; Shi Z; Yang K; Wu Y; Liu H
    Sci Total Environ; 2019 Aug; 678():533-542. PubMed ID: 31078843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dataset and mesh of the CFD numerical model for the modelling and simulation of a PEM fuel cell.
    Iranzo A; Toharias B; Suárez C; Rosa F; Pino J
    Data Brief; 2022 Apr; 41():107987. PubMed ID: 35257018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Microporous Layer on Heat and Mass Transfer in a Single Cell of Polymer Electrolyte Fuel Cell Using a Thin Polymer Electrolyte Membrane and a Thin Gas Diffusion Layer Operated at a High-Temperature Range.
    Nishimura A; Okado T; Kojima Y; Hu E
    ACS Omega; 2021 Jun; 6(22):14575-14584. PubMed ID: 34124481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ultrathin self-humidifying membrane for PEM fuel cell application: fabrication, characterization, and experimental analysis.
    Zhu X; Zhang H; Zhang Y; Liang Y; Wang X; Yi B
    J Phys Chem B; 2006 Jul; 110(29):14240-8. PubMed ID: 16854127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen availability effect on the performance of air-breathing cathode microbial fuel cell.
    Mateo S; Rodrigo M; Fonseca LP; Cañizares P; Fernandez-Morales FJ
    Biotechnol Prog; 2015; 31(4):900-7. PubMed ID: 25962613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.