These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22291583)

  • 1. Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity.
    Luz Y; Shamir M
    PLoS Comput Biol; 2012 Jan; 8(1):e1002334. PubMed ID: 22291583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of STDP temporal kernel structure on the learning dynamics of single excitatory and inhibitory synapses.
    Luz Y; Shamir M
    PLoS One; 2014; 9(7):e101109. PubMed ID: 24999634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementary Inhibitory Weight Profiles Emerge from Plasticity and Allow Flexible Switching of Receptive Fields.
    Agnes EJ; Luppi AI; Vogels TP
    J Neurosci; 2020 Dec; 40(50):9634-9649. PubMed ID: 33168622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic balance of excitation and inhibition rapidly modulates spike probability and precision in feed-forward hippocampal circuits.
    Wahlstrom-Helgren S; Klyachko VA
    J Neurophysiol; 2016 Dec; 116(6):2564-2575. PubMed ID: 27605532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the dynamics of cerebellar Purkinje cells through the interaction of excitatory and inhibitory feedforward pathways.
    Tang Y; An L; Yuan Y; Pei Q; Wang Q; Liu JK
    PLoS Comput Biol; 2021 Feb; 17(2):e1008670. PubMed ID: 33566820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks.
    Vogels TP; Sprekeler H; Zenke F; Clopath C; Gerstner W
    Science; 2011 Dec; 334(6062):1569-73. PubMed ID: 22075724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All for One But Not One for All: Excitatory Synaptic Scaling and Intrinsic Excitability Are Coregulated by CaMKIV, Whereas Inhibitory Synaptic Scaling Is Under Independent Control.
    Joseph A; Turrigiano GG
    J Neurosci; 2017 Jul; 37(28):6778-6785. PubMed ID: 28592691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic Plasticity in Cortical Inhibitory Neurons: What Mechanisms May Help to Balance Synaptic Weight Changes?
    Bannon NM; Chistiakova M; Volgushev M
    Front Cell Neurosci; 2020; 14():204. PubMed ID: 33100968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus.
    Sedlacek M; Brenowitz SD
    Front Neural Circuits; 2014; 8():78. PubMed ID: 25071459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitatory synaptic dysfunction cell-autonomously decreases inhibitory inputs and disrupts structural and functional plasticity.
    He HY; Shen W; Zheng L; Guo X; Cline HT
    Nat Commun; 2018 Jul; 9(1):2893. PubMed ID: 30042473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei.
    Zheng N; Raman IM
    Cerebellum; 2010 Mar; 9(1):56-66. PubMed ID: 19847585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike-Timing-dependent plasticity and short-term plasticity jointly control the excitation of Hebbian plasticity without weight constraints in neural networks.
    Fernando S; Yamada K
    Comput Intell Neurosci; 2012; 2012():968272. PubMed ID: 23365563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of order-selectivity based on dynamic changes in the balance of excitation and inhibition produced by short-term synaptic plasticity.
    Goudar V; Buonomano DV
    J Neurophysiol; 2015 Jan; 113(2):509-23. PubMed ID: 25339707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balanced networks under spike-time dependent plasticity.
    Akil AE; Rosenbaum R; Josić K
    PLoS Comput Biol; 2021 May; 17(5):e1008958. PubMed ID: 33979336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity in an electrosensory system. III. Contrasting properties of spatially segregated dendritic inputs.
    Bastian J
    J Neurophysiol; 1998 Apr; 79(4):1839-57. PubMed ID: 9535952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spike-timing dependent inhibitory plasticity to learn a selective gating of backpropagating action potentials.
    Wilmes KA; Schleimer JH; Schreiber S
    Eur J Neurosci; 2017 Apr; 45(8):1032-1043. PubMed ID: 27374316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging feed-forward inhibition allows the robust formation of direction selectivity in the developing ferret visual cortex.
    Van Hooser SD; Escobar GM; Maffei A; Miller P
    J Neurophysiol; 2014 Jun; 111(11):2355-73. PubMed ID: 24598528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.