These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22291631)

  • 1. Inferring relevance in a changing world.
    Wilson RC; Niv Y
    Front Hum Neurosci; 2011; 5():189. PubMed ID: 22291631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Necessary Contributions of Human Frontal Lobe Subregions to Reward Learning in a Dynamic, Multidimensional Environment.
    Vaidya AR; Fellows LK
    J Neurosci; 2016 Sep; 36(38):9843-58. PubMed ID: 27656023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intact Reinforcement Learning But Impaired Attentional Control During Multidimensional Probabilistic Learning in Older Adults.
    Daniel R; Radulescu A; Niv Y
    J Neurosci; 2020 Jan; 40(5):1084-1096. PubMed ID: 31826943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Humans combine value learning and hypothesis testing strategically in multi-dimensional probabilistic reward learning.
    Song M; Baah PA; Cai MB; Niv Y
    PLoS Comput Biol; 2022 Nov; 18(11):e1010699. PubMed ID: 36417419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulus Context and Reward Contingency Induce Behavioral Adaptation in a Rodent Tactile Detection Task.
    Waiblinger C; Wu CM; Bolus MF; Borden PY; Stanley GB
    J Neurosci; 2019 Feb; 39(6):1088-1099. PubMed ID: 30530858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Causal Model Comparison Shows That Human Representation Learning Is Not Bayesian.
    Geana A; Niv Y
    Cold Spring Harb Symp Quant Biol; 2014; 79():161-8. PubMed ID: 25943767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of belief-like representations through reinforcement learning.
    Hennig JA; Pinto SAR; Yamaguchi T; Linderman SW; Uchida N; Gershman SJ
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal Learning in a Multidimensional Discrimination Task as Explained by Dimension-Specific Allocation of Attention.
    Aluisi F; Rubinchik A; Morris G
    Front Neurosci; 2018; 12():356. PubMed ID: 29922123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement learning in multidimensional environments relies on attention mechanisms.
    Niv Y; Daniel R; Geana A; Gershman SJ; Leong YC; Radulescu A; Wilson RC
    J Neurosci; 2015 May; 35(21):8145-57. PubMed ID: 26019331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decision making under uncertainty: a neural model based on partially observable markov decision processes.
    Rao RP
    Front Comput Neurosci; 2010; 4():146. PubMed ID: 21152255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of aging on the interaction between reinforcement learning and attention.
    Radulescu A; Daniel R; Niv Y
    Psychol Aging; 2016 Nov; 31(7):747-757. PubMed ID: 27599017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holistic Reinforcement Learning: The Role of Structure and Attention.
    Radulescu A; Niv Y; Ballard I
    Trends Cogn Sci; 2019 Apr; 23(4):278-292. PubMed ID: 30824227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative update of beliefs and state-transition functions in human reinforcement learning.
    Higashi H; Minami T; Nakauchi S
    Sci Rep; 2019 Nov; 9(1):17704. PubMed ID: 31776353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SELECTIVENESS OF THE EXPOSURE-BASED PERCEPTUAL LEARNING: WHAT TO LEARN AND WHAT NOT TO LEARN.
    Choi H; Watanabe T
    Learn Percept; 2009 May; 1(1):89-98. PubMed ID: 20454466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The paradoxical performance by different species on the ephemeral reward task.
    Zentall TR
    Learn Behav; 2021 Mar; 49(1):99-105. PubMed ID: 32583140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State anxiety biases estimates of uncertainty and impairs reward learning in volatile environments.
    Hein TP; de Fockert J; Ruiz MH
    Neuroimage; 2021 Jan; 224():117424. PubMed ID: 33035670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Interaction between Reinforcement Learning and Attention in Multidimensional Environments.
    Leong YC; Radulescu A; Daniel R; DeWoskin V; Niv Y
    Neuron; 2017 Jan; 93(2):451-463. PubMed ID: 28103483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness.
    Balcarras M; Ardid S; Kaping D; Everling S; Womelsdorf T
    J Cogn Neurosci; 2016 Feb; 28(2):333-49. PubMed ID: 26488586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning what matters: A neural explanation for the sparsity bias.
    Hassall CD; Connor PC; Trappenberg TP; McDonald JJ; Krigolson OE
    Int J Psychophysiol; 2018 May; 127():62-72. PubMed ID: 29551656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reward activates stimulus-specific and task-dependent representations in visual association cortices.
    Schiffer AM; Muller T; Yeung N; Waszak F
    J Neurosci; 2014 Nov; 34(47):15610-20. PubMed ID: 25411489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.